跳到主要內容

臺灣博碩士論文加值系統

(75.101.211.110) 您好!臺灣時間:2022/01/26 13:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃啟環
研究生(外文):Chi-Huan Huang
論文名稱:矽在絕緣層上N型金氧半場效電晶體在射頻應用之製程研究
論文名稱(外文):Fabrication and Characterization of SOI nMOSFETs for RF Applications
指導教授:張俊彥
指導教授(外文):Chun-Yen Chang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:71
中文關鍵詞:矽在絕緣層上完全空乏部分空乏截止頻率最大共振頻率射頻H型閘極T型閘極
外文關鍵詞:SOIfully-depletedpartially-depletedftfmaxRFH-gateT-gate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:418
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
最近幾年,矽在絕緣層上(silicon-on-insulator, SOI)製程一直被認為是未來在製作超大型積體電路的主流技術。然而,在射頻的領域中,不同的閘極結構會影響到電晶體的射頻特性,而扭結效應(kink effect)在SOI上的互補式金氧半電晶體元件仍然是一個爭論的議題。而且,完全空乏與部分空乏SOI金氧半電晶體兩者熟劣熟優也是一個爭論的議題。
在我們研究中,六吋SIMOX晶圓被使用來製造射頻矽在絕緣層上N型金氧半電晶體。在射頻特性方面,當汲極與閘極電壓均為2伏時,對於0.3微米的N型金氧半電晶體,其截止頻率與最大震盪頻率為12.7 GHz與15 GHz。在固定總閘寬度的情況下,單一根閘的寬度對射頻SOI金氧半電晶體的特性影響是我們的研究重點之一。而研究結果指出,在具H閘結構的部分空乏SOI元件中,縮短單一根閘的寬度會使元件的射頻特性變差,這是因為較多的寄生閘源電容寄生在元件中。
而部分空乏與完全空乏元件之間特性比較亦是我們研究的目的之一,而以製程與元件特性的觀點來看,完全空乏的元件較優於部分空乏的元件。因為完全空乏的元件具有較高的轉導,以致於其射頻特性明顯地較佳,而且在製程步驟上也較簡單。對於部分空乏且基體懸浮的元件會有扭結現象的發生,而扭結現象會使轉導變大,同時使射頻特性變的較佳。然而,在部分空乏基體接地的元件中,扭結效應可以完全的被抑制,而其元件特性類似於塊材元件。然而,在完全空乏的元件中,我們發現其扭結效應並不明顯。

Recently silicon-on-insulator (SOI) technology has been considered as the mainstream technology of the future for ULSI circuits. However, in the RF field, different gate structure may influence RF characteristics of the MOS transistors and kink effect remains an issue for fabricating CMOS on the SOI substrate. Furthermore which one is superior between the partially-depleted (PD) and fully-depleted (FD) SOI MOSFETs is still a controversial issue.
In our study, 6-inch n-type (100) SIMOX wafers were employed to fabricate RF SOI nMOSFETs. In RF characteristics, ft (cut-off frequency) = 12.7 GHz and fmax (maximum oscillation frequency) = 15 GHz at Vg = Vd = 2 V could be observed for 0.3 µm nMOSFET. Influence of the finger length at fixed total gate width on the RF characteristics of the SOI nMOSFETs was investigated. Results of our investigation indicate that in the PD H-gate devices, shortening the finger length degrades RF characteristics. That is due to more parasitic gate-source capacitance would exist in the device.
And comparison between PD and FD devices is another object in our study. In the viewpoint of process and devices performance, FD devices are always superior to PD ones. In FD devices, due to higher gm, the RF characteristics could be improved significantly; furthermore the process of fabricating nMOSFETs is simpler. For PD devices, kink effect can be observed in floating-body devices. And kink effect may enhance gm and make RF characteristics better. But kink effect is still an issue in RF circuits. However in the PD body-tied devices, the kink effect can be suppressed entirely. And the characteristics are much like the bulk devices. In the FD devices, we found the kink effect can be unobvious.

Contents
Abstract (Chinese) I
Abstract (English) II
Acknowledgment (Chinese) III
Contents IV
Table Captions VI
Figure Captions VII
Chapter 1
Introduction
1.1 Advantage of SOI MOSFETs Technology 1
1.2 Partially-Depleted and Fully-Depleted SOI MOSFETs 2
1.3 The Influence of the SOI Technology on RF MOSFETs 3
1.4 Organization of the Thesis 4
Chapter 2
Experiment
2.1 Layout Design 6
2.2 Fabrication Processes of RF SOI nMOSFETs 6
2.3 Measurement Techniques 9
2.3.1 I-V Measurement 9
2.3.2 Noise Measurement 9
2.3.3 High Frequency Characteristics Measurement 9
Chapter 3
DC Characteristics and Low-Frequency Noise of RF SOI nMOSFETs
3.1 Basic DC Characteristics 10
3.1.1 Drive Current 10
3.1.2 Transcoductance 11
3.1.3 Subthreshold Swing 12
3.1.4 Kink Effect 12
3.2 Low-Frequency Noise 13
3.2.1 Low-Frequency Noise in the PD Device 13
3.2.2 Low-Frequency Noise in the FD Device 15
Chapter 4
RF Characteristics and High-Frequency Noise of the RF SOI nMOSFETs
4.1 RF Characteristics 16
4.1.1 ft and fmax 16
4.1.2 Dependence of RF Characteristics on Finger Length 16
4.1.3 Dependence of RF Characteristics on Gate Length 18
4.1.4 Comparison of RF Characteristics between PD and FD 18
4.1.5 Influence of Gate Structure on RF Characteristics 19
4.2 High-Frequency Noise 19
Chapter 5
Conclusion and Suggestions for Future Work
5.1 Conclusion 21
5.2 Future Work 22
Reference 23
Vita (Chinese)

Reference:
[1] S. M. Sze, “Physics of Semiconductor Devices”, Chaper 8
[2] J. P. Colinge, “Recent Advance in SOI Technology”, IEDM Tech. Dig., pp. 817-820, 1994
[3] E. Suzuki, K. Ishii, S. Kanemaru, T. Maeda, T. Tsutsumi, T. Sekigawa, K. Nagai, and H. Hiroshima, “Highly Suppressed Short-Channel Effects in Ultrathin SOI n-MOSFET’s”, IEEE Trans. Electron Devices, vol. 47, pp. 354-359, 2000
[4] J. P. Colinge, IEEE Trans. Electron Devices, vol. 34, pp. 2173, 1987
[5] J. P. Colinge, “Silicon-on-Insulator Technology”, Chaper 5
[6] T. Ikeda, S. Wakahara, Y. Tamaki, and H. Higuchi, “A Soft Error Immune 0.35 μm PD-SOI SRAM Technology Compatible with Bulk CMOS”, IEEE International SOI Conference, 1998
[7] S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walsta, and Changhong Dai, “Impact of CMOS Process Scaling and SOI on the Soft Error Rates of Logic Processes”, VLSI Technology Tech. Dig., pp. 73-74, 2001
[8] F. Balestra, T. Matsumoto, M. Tsuno, H. Nakabayashi, Y. Inoue, and M. Koyanagi, “Moderate Kink Effect in Fully Depleted Thin-Film SOI MOSFETs”, Electronics Letters, vol. 31, pp. 326-327, 1995
[9] J. P. Colinge, “Reduction of Kink Effect in Thin-Film SOI MOSFETs”, IEEE Electron Device Letters, vol. 9, pp. 97-99, 1988
[10] N. Zamdmer, A. Ray, J. -O. Plouchart, L. Wagner, N. Fong, K. A. Jenkins, W. Jin, P. Smeys, I. Yang, G. Shahidi, and F. Assaderaghi, “A 0.13-μm SOI CMOS Technology for Low-Power Digital and RF Applications”, VLSI Technology Tech. Dig., pp. 85-86, 2001
[11] G. G. Shahidi, C. Blair, K. Beyer, T. Bucelot, T. Buti, P. N. Chang, S. Chu, P. Coane, J. Comfort, B. Davari, R. Dennard, S. Furkay, H. Hovel, J. Johnson, D. Klaus, K. Kiewtniack, R. Logan, T. Lii, P. A. McFarland, N. Mazzeo, D. Moy, S. Neely, T. Ning, M. Rodrigues, D. Sadana, S. Stiffler, J. Sun, F. Swell, and J. Warnock, “A Room Temperature 0.1 μm CMOS on SOI”, IEEE Trans. Electron Devices, vol. 41, pp. 2405-2412, 1994
[12] Y. Yamaguchi, and Y. Inoue, “SOI DRAM: its Futures and Posibility”, Proceeding of IEEE International SOI Conference, pp. 122-124, 1995
[13] J. G. Fossum, S. Krishnan, O. Faynot, S. Cristoloveanu, and C. Raynaud, “Subthreshold Kink in Fully Depleted SOI MOSFET’s”, IEEE Electron Device Letters, vol. 16, pp. 542-544, Dec. 1995
[14] James B. Kuo and Ker-Wei Su, “CMOS VLSI ENGINEERING Silicon-on-Insulator (SOI)”, Chapter 4
[15] Y. C. Tseng, W. M. Huang, M. Mendicino, D, Ngo, V. Ilderem, and Jason C. S. Woo, “Device Design Methodology to Optimize Low-Frequency Noise in Advanced SOI CMOS Technology for RF IC’s”, IEDM Tech. Dig., pp. 949-952, 1998
[16] Y. Taur, S. Wind, Y. J. Mii, Y. Lii, D. Moy, K. A. Jenkins, C. L. Chen, P. J. Coane, D. Klaus, J. Bucchignano, M. Rosenfield, M. G. R. Thomson, and M. Polcari, “High Performance 0.1 µm CMOS Devices with 0.15 V Power Supply”, IEDM Tech. Dig., pp. 127-130, 1993
[17] L. F. Tiemeijer, H. M. J. Boots, R. J. Havens, A. J. Scholten, P. H. W. de Vreede, P. H. Woerlee, A. Heringa, and D. B. M. Klaassen, “A Record High 150 GHz fmax Realized at 0.18 µm Gate Length in an Industrial RF-CMOS Technology”, IEDM Tech. Dig., pp. 10.4.1-10.4.4, 2001
[18] S. Maeda, Y. Wada, K. Yamamoto, H. Komurasaki, Y. Hirano, T. Iwamatsu, Y. Yamaguchi, T. Ipposhi, K. Ueda, K. Mashiko, and M. Inuishi, “Impact of 0.18 μm SOI CMOS Technology Using Hybrid Trench Isolation with High Resistivity Substrate on Embedded RF/Analog Applications”, VLSI Technology Tech. Dig., pp. 155, 2000
[19] S. P. Voinigescu, S. W. Tarasewicz, T. MacElwee, and J. Ilowski, “An Assessment of the State-of-the-Art 0.5 μm Bulk Technology for RF Applications”, IEDM Tech. Dig., pp. 721-724, 1995
[20] Q. Huang, F. Piazza, P. Orsatti, and T. Ohguro, “The Impact of Scaling Down to Deep Submicron on CMOS RF Circuits”, IEEE J. of Solid-State Circuits, pp. 1023-1036, 1998
[21] E. Morifiji, H. S. Momose, T. Ohguro, T. Yoshitomi, H. Kimijima, F. Matsuoka, M. Kinukawa, Y. Katsumata, and H. Iwai, “Future Perspective and Scaling Down Roadmap for RF CMOS”, VLSI Technology Tech. Dig., pp. 163-164, 1999
[22] L. Hyeokjae, J. -H. Lee, Y. J. Park, and H. S. Min, “ft Variation Caused by Channel Effects in Ladder Gate Structure for RF SOI MOSFETs”, Proceeding of IEEE International SOI Conference, pp. 27-28, 2001
[23] T. Nakashima, S. Kubo, Y. Otsu, T, Ike, N. Suematsu, M. Yamawaki, and T. Hirao, “0.8 μm BiCMOS Process with High Resistivity Substrate for L-band Si-MMIC Applications”, Proceeding of IEEE Bipolar/BiCMOS Circuits and Technology Meeting, pp. 134-137, 1996
[24] J. N. Burghartz, M. Soyuer, K. A. Jenkins, M. Kies, P. Dolan, K. Stein, J. Manilowski, and D. L. Harame, “RF Components Implemented in an Analog SiGe Bipolar Technology”, Proceeding of IEEE Bipolar/BiCMOS Circuits and Technology Meeting, pp. 138-141, 1996
[25] W. M. Huang, D. J. Mark, D. C. Diaz, P. J. Welch, and J. M. Ford, “TFSOI — Can it Meet the Challenge of Single Chip Portable Wireless Systems?”, Proceeding of IEEE International SOI Conference, pp. 1-3, 1997
[26] D. Eggert, P. Huebler, A. Huerrich, H. Kueck, W. Budde, and M. Vorwerk, “A SOI-RF-CMOS Technology on High Resistivity SIMOX Substrates for Microwave Applications to 5 GHz”, IEEE Trans. Electron Devices, vol. 44, pp. 1981-1989, 1997
[27] A. Viviani, J. P. Raskin, D. Flandre, J. P. Colinge, and D. Vanhoenacker, “Extended Study of Crosstalk in SOI SIMOX Substrates”, IEDM Tech. Dig., pp. 713-716, 1995
[28] K. Joardar, “A Simple Approach to Modeling Cross-Talk in Integrated Circuits”, IEEE J. of Solid-State Circuits, pp. 1212-1219, 1994
[29] Y. Taur and Tak H. Ning, “Fundamentals of Modern VLSI Devices” Chapter 3
[30] W. M. Huang, Y. C. Tseng, D. Monk, D. Diaz, J. Ford, and S. Cheng, “TFSOI Technology for Portable Wireless Communication Systems”, IEEE CICC, pp. 421-426, 1997
[31] K. K. Hung, P. K. Ko, C. M. Hu, Y. C. Cheng, “A unified model for the flicker noise in Metal-Oxide-Semiconductor Field-Effect transistors”, IEEE Trans. Electron Devices, vol. 37, pp. 654-665, March 1990
[32] W. Jin, P. C. H. Chan, S. K. H. Fung, and P. K. Ko, “A physically-based low-frequency noise model for NFD SOI MOSFETs”, Proceeding of IEEE International SOI Conference, pp. 23-24, 1998
[33] T. Manku, “Microwave CMOS ― Device Physics and Design”, IEEE J. of Solid-State Circuits, pp. 277-285, 1999

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top