跳到主要內容

臺灣博碩士論文加值系統

(54.173.214.227) 您好!臺灣時間:2022/01/29 16:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉正淇
研究生(外文):Liu Chen Chi
論文名稱:快速升溫氧化成長超薄氧化層研究
論文名稱(外文):The study of RTO thin oxides
指導教授:羅正忠羅正忠引用關係
指導教授(外文):Lou, Jen-Chung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:32
中文關鍵詞:超薄氧化層快速升溫劉正淇
外文關鍵詞:thin oxiderapid thermalLiu Chen Chi
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本論文可分為兩個部分:在第一部份中,我們利用RTP的方式,成長一層薄氧化層;藉著改變不同成長溫度、時間和不同的回火條件,來研究這些因素對氧化層特性的影響。
在第二個部分中,我們在長氧化層前,先以離子佈植的方式打入氮分子離子。研究氮離子佈植量和不同成長條件對於氧化層特性之影響。
我們利用做出MOS電容來量測電性,並做比較。找出不同製程下的漏電流密度較小和較少的捕捉電賀的條件。

There are two parts in the thesis. In the first part, we use the rapid thermal process to grow a thin oxide layer. The factors including the growth temperature, growth times and different annealing conditions were controlled to find the relation between these factors and oxide qualities.
In the second part, we studied the influence of N2+ implantation into Si substrate before oxidation. The leakage current obviously reduced at some implantation conditions.
MOS capacitors were manufactured to measure the electric characteristics. The less charge density and leakage current density for the oxides are we expected.

Contents
Abstract (Chinese)………………………………………………………i
Abstract (English) ……………………………………………………ii
Acknowledgments (in Chinese)………………………………………iii
Contents …………………………………………………………………iv
Table Captions…………………………………………………………vii
Figure Captions………………………………………………………viii
Chapter 1 Introduction…………………………………………………1
1.1 Background……………………………………………………………1
1.2 Organization of this thesis ……………………………………2
Chapter 2 Experimental…………………………………………………4
2.1 Process flows ………………………………………………………4
2.2 Measurement …………………………………………………………4
Chapter 3 RTP system
3.1 Temperature measurement …………………………………………6
3.1.1 Thermocouple………………………………………………………6
3.1.2 Pyrometer …………………………………………………………6
3.2 The temperature control …………………………………………6
3.2.1 Power control ……………………………………………………6
3.2.2 PID control ………………………………………………………7
3.2.3 Cooling ……………………………………………………………7
3.3 Temperature profiles………………………………………………7
Chapter 4 Rapid Thermal Oxidation …………………………………8
4.1 Rapid thermal Growth Kinetics …………………………………8
4.1.1 Oxidation Rate……………………………………………………8
4.1.2 Oxidation temperature effect…………………………………9
4.1.3 O2 flow rate effect……………………………………………10
4.1.4 O2 partial pressure effect …………………………………11
4.2 Rapid thermal annealing…………………………………………11
4.2.1 Anneal effect on optical thickness variation …………12
4.2.1.1 One step post oxidation annealing………………………12
4.2.1.2 Two step post oxidation annealing………………………13
4.3 The rapid thermal oxide electrical characteristics ……13
4.3.1.1 Effect oxide thickness ……………………………………13
4.3.1.2 Nitridation effect on effective dielectric thickness variation…………………………………………………………………14
4.3.2.1 High frequency C-V characteristics.……………………15
4.3.2.2 discussion.……………………………………………………16
4.3.3 I-V (J-E) characteristics……………………………………18
4.3.3.1 IV characteristics for different thickness of RTO oxides.……………………………………………………………………18
4.3.3.2 J-E curve for different conditions of rapid thermal oxide………………………………………………………………………18
4.3.4 Current- time and C-V characteristics……………………19
4.3.5.1 Stress Induce Leakage Current……………………………20
4.3.5.2 Trap-assisted tunneling……………………………………20
4.3.5.3 SILC for samples after annealing.………………………20
4.4 AFM analysis.………………………………………………………21
Chapter 5 Nitrogen implantation into the substrate before Rapid Thermal oxidation………………………………………………………22
5.1 Introduction.………………………………………………………22
5.2 Experiment.…………………………………………………………23
5.3 Oxide thickness……………………………………………………23
5.3.1 Oxide growth rate reduction after nitrogen implantation …….………………………………………………………………………23
5.3.2 Influence of annealing before and after rapid thermal oxidation…………………………………………………………………24
5.3.2.1 Pre-oxidation-annealing effect on RTO thickness……24
5.3.2.2 Post-oxidation-annealing effect on RTO thickness.…25
5.4 C-V measurement……………………………………………………25
5.5 JE measurement (N01~N40) ………………………………………25
5.5.1 Effect of N2+ Dose implantation on J-E curves…………25
5.5.2 Effect of rapid thermal oxide growth temperature on J-E curves…………………………………………………………………….25
5.5.3 Annealing effect on J-E curves (P01~P24).………………26
5.5.3.1 Pre-Oxidation-Annealing Effect on J-E curves.………26
5.5.3.2 Post-Oxidation-Annealing Effect on J-E curves………26
5.6 AFM analysis……………………………………26
5.7 Summary.…………………………………………26
Chapter 6 Conclusion………………………………28
References……………………………………………29

Reference
1.Takashi Hori, Gate Dielectrics and MOS ULSIs
2.Richard B. Fair, Rapid Thermal Processing
3.F. J. Grunthaner, P. J. Grunthaner, and J. Maserjian, Radiation-Induced Defects in SiO2 as Determined with XPS, IEEE Transactions on Nuclear Science, Vol. NS-29,No. 6, December 1982
4.Jeong-Hwan Yang, Dae-Rim Kang, Seong-Ho Kwak, Su-Cheol Lee, Young-Wug Kim, Kwang Pyuk Suh, Device Characteristics and Reliability for 0.18um MOSFET with 20A Gate Oxide Formed by RTO, IEEE 1999,
5.L. Fonseca and F. Capabadal, IEEE 1999, Forming Nitrided Gate Oxides by Nitrogen Implantation into the Substrate before Gate Oxidation by RTO,
6.Chin-Yang Chen and Jenn-Gwo Hwu, Member, IEEE, Effect of Post oxidation Annealing on the Reliability of Rapid Thermal Thin Gate Oxides, IEEE Electron Device Letters, Vol. 18, NO. 1, January 1997
7.L. Fonseca and F. Campabadal, Vol. 15, No.11, November 1994, Breakdown Characteristics of RTO 10nm SiO2 Films Grown at Different Temperatures, IEEE Electron Device Letters
8.Luis Fonseca and Francesca Campabadal, A Comparison of RTO and Furnace SiO2 Time-Zero-Breakdown Characteristics, IEEE Transactions on Electron Devices. Vol.38, No.8, August 1991
9.Reda R. Razouk and Bruce E. Deal, Dependence of Interface State Density on Silicon Thermal Oxidation Process Variables, J. Electrochem. Soc.: Solid-State Science and Technology, September 1979
10.Eiji Hasegawa, Akihiko Ishitani, Koichi Akimoto, Masaru Tsukiji, and Noriko Ohta, SiO2/Si Interface Structures and Reliability Characteristics, J. Electrochem. Soc., Vol. 142, No. 1, January 1995
11.F. J. Grunthaner, P. J. Grunthaner, and J. Masterjian Jet Propulsion Laboratory California Institute of Technology, Vol. NS-29, No. 6, December 1982, Radiation-Induced Defects in SiO2 as Determined with XPS, IEEE Transactions on Nuclear Science
12.F. J. Grunthaner, B. F. Lewis, N. Zamini, and J. Maserjian, XPS studies of Structure-Induced Radiation Effects at the Si/SiO2 Interface, IEEE Transactions on Nuclear Science, Vol. NS-27, No. 6, December 1980
13.Pushkar P. Apte, Taishi Kubota, and Krishna C. Saraswat, Constant Current Stress Breakdown in Ultrathin SiO2 Films, J, Electrochem. Soc., vol. 140, No.3, March 1993
14.IEDM 1996, 96-449, High Performance 0.2um CMOS with 25A Gate Oxide Grown on Nitrogen Implanted Si substrates
15.Appl. Phys. Lett. 69(24), 9 December 1996Reliability of gate oxide grown on nitrogen-implanted Si substrates
16.H. R. Soleimani, B.S. Doyle, and A. Philipossian, Formation of Ultrathin Nitrided SiO2 oxides by Direct Nitrogen Implantation into Silicon, J. Electrochem. Soc, Vol. 142, No. 8, August 1995
17.J. Vac. Sci. Technol., Vol. 20, No.3, March 1982, observation of positively charged state generation near the Si/SiO2 interface during Fowler-Nordheim tunneling
18.IEEE Transactions on Electron Devices, Vol.35, No. 12, December 1988, High-Field-Induced Degradation in Ultra-Thin SiO2 Films
19.C.Y. Chang, S. M. Sze:”ULSI Technology”,1996
20.Stanley Wolf:”SILICON PROCESSING FOR THE VLSI ERA”,1995
21.C.T. Liu, E.J. Lloyd, Yi Ma, M. Du, R.L. Opila, and S.J. Hillenius, High Performance 0.2um CMOS with 25A Gate Oxide Grown on Nitrogen Implanted Si Substrates, IEDM 96-499
22.J.H. Stathis and D.J. Dimaria, Reliability Projection for Ultra-Thin Oxides at Low Voltage, 1998 IEEE, J.H. Stathis and D.J. Dimaria
23.IEEE 1990, Nitridaiton and Post-Nitridation Anneals of SiO2 for Ultrathin Dielectrics
24.Bikas Maiti, Member, IEEE, Philip J. Tobin, Member IEEE, Oxynitride Gate Dielectric Grown in Nitric Oxide (NO): The Effect of Reoxidation on Dielectric Reliability of the Active Edge, IEEE Electron Device Letters, Vol.17, No.6, June 1996
25.Aniruddha B. Joshi, Giwan Yoon, Jonghan Kim, G. Q. Lo, and Dim-Lee Kwong, High-Field Breakdown in Thin Oxides Grown in N2O Ambient, IEEE Electron Device Letters, Vol.40, No.8, August 1993
26.TAKASHI HORI. MEMBER, IEEE, HIROSHI IWASAKI, AND KAZUHIKO TSUJI, Electrical and Physical Properties of Ultrathin Reoxidized Nitrided Oxides Prepared by Rapid Thermal Processing, IEEE Transactions on Electron Devices. Vol. 36, NO. 2, February 1989
27.Z.-Q. Yao, Student Member, IEEE, H. B. Harrison, S. Dimitrijev, Member, IEEE, and Y. T. Yeow, Senior Member, IEEE, Effects of Nitric Oxide Annealing of Thermally Grown Silicon Dioxide Characteristics, IEEE Electron Device Letters, Vol. 16, NO. 8, August 1995
28.J, Appl. Phys., vol.47, no. 7, p.3192, 1976, Impact ionization and positive charge in thin SiO2 films
29.Appl. Phys. Lett., vol. 49, no. 10, p.669, 1986, Substrate Hole current and oxide breakdown.
30.IEEE Electron Device Lett., vol, EDL-7, no.3, p164, 1986, Hole trapping and breakdown in thin SiO2.
31.B. E. Deal, The current understanding of charges in the thermally oxidized silicon structure, J. Electrochem. Soc., vol.121, p.198C, 1974.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top