跳到主要內容

臺灣博碩士論文加值系統

(52.203.18.65) 您好!臺灣時間:2022/01/19 15:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂明霈
研究生(外文):Ming-Pei Lu
論文名稱:金氧半電晶體的邊緣直接穿透電流之隨機擾動
論文名稱(外文):Two-Level RTS (Random Telegraph Signal) Behaviors in MOSFET Edge Direct Tunneling (EDT) Currents
指導教授:陳明哲陳明哲引用關係
指導教授(外文):Ming- Jer Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:31
中文關鍵詞:擾動訊號隨機穿透電流
外文關鍵詞:randomRTStelegraphsignaltunneling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
元件分離的電阻值隨著統計分布切換稱為隨機擾動雜訊(RTS),因為流經過元件的電流類似電報訊號。眾所周知, RTS 的特性在元件分析上是非常有用的:(i)它可以用來就微觀方面探索在閘極堆疊介電層中內部以及表面的陷阱;(ii)它可以當作偵測製程所造成的潛在缺陷的敏銳工具;以及(iii)它可以用來估算奈米尺寸元件的功能極限。
打開-關閉切換的行為或是兩個級別的隨機擾動雜訊都是在低電壓下 (-1.40 V < VG < -0.77 V) 量測N型通道超薄閘介電層( 1 奈米的氧化層 + 1 奈米的氮化矽 )金氧半電晶體的邊緣直接穿透電流。起因是由於製程所造成的缺陷可以說是局部的閘極堆疊變薄(或是等效於具傳導性的漏電流蘇)。在這個非固有的狀況中,電流中電子被陷阱抓住或是電子被陷阱釋放出來的理論可以適當的解釋我們所量到的數據,尤其隨機擾動雜訊振幅的大小比例高達百分之十八。電流對電壓的特性曲線很直覺的關聯著某些個缺陷點,展現和氧化層變薄的事實十分的一致。一個敏感的監督製程的角色就像是展示出缺陷發生的機率及位置所在。

The statistical switching of the electrical resistance of a device between two discrete values is termed “random telegraph signal” (RTS) because the current through such a device resembles a telegraph signal. It is well recognized that in the case of MOS devices, characterization of RTS behaviors is very useful: (i) it can explore microscopic aspects of bulk/interface traps in gate stack dielectric; (ii) it can sensitively monitor potential defects in a manufacturing process; and (iii) it can estimate performance limits in nanodevices due to noise concern.
On-off switching behaviors or two-level random telegraph signals (RTS) are measured in the low voltage (-1.40 V < VG < - 0.77 V) edge direct tunneling (EDT) currents in ultrathin gate stack (10 Å oxide + 10 Å nitride) n-channel metal-oxide-semiconductor field-effect transistors. The plausible origin is the process-induced defects in terms of localized gate stack thinning (or equivalently the conductive filament). In such extrinsic case, the current trapping-detrapping theories can adequately elucidate the data, particularly the RTS magnitude as large as 18%. The current-voltage (I-V) characteristic associated with a certain defective spot is assessed straightforwardly, showing remarkable compatibility with existing oxide thinning case. The role as a sensitive process monitor is demonstrated in terms of the occurrence probability of the defects as well as their locations.

Chapter 1 Introduction........................1
Chapter 2 Experimental Details................3
Chapter 3 RTS (Random Telegraph Signal).......5
Chapter 4 RTS Data and Interpretations .......10
Chapter 5 Conclusion..........................15
Figure Captions

[1] N. Yang, W. K. Henson, and J. J. Wortman, “Analysis of
tunneling currents and reliability of NMOSFETs with sub-2 nm
gate oxides,“ International Electron Devices Meeting
(IEDM), Technical Digest, p. 453 (1999).
[2] K. N. Yang, H. T. Huang, M. J. Chen, Y. M. Lin, M. C. Yu,
S. M. Jang, C. H. Yu, and M. S. Liang, “Edge direct
tunneling (EDT) induced drain and gate leakage in ultrathin
gate oxide MOSFETs,” Extended Abstracts of International
Conference on Solid State Devices and Materials (SSDM), p.
208 (2000).
[3] K. N. Yang, H. T. Huang, M. J. Chen, Y. M. Lin, M. C. Yu,
S. M. Jang, C. H. Yu, and M. S. Liang, “Edge hole direct
tunneling in off-state ultrathin gate oxide p-channel
MOSFETs,” International Electron Devices Meeting (IEDM),
Technical Digest, p. 679 (2000).
[4] M. J. Kirton, and M. J. Uren, “Noise in solid-state
microstructures: a new perspective on individual defects,
interface states, and low-frequency (1/f) noise,” Advances
in Physics, vol. 38, p. 367 (1989).
[5] L. Vandamme, and D. Sodini, “On the anomalous behavior of
the relative amplitude of RTS noise,” Solid State
Electronics, vol. 42, p. 901 (1994).
[6] K. K. Hung, P. K. Ko, and C. Hu, ”Random telegraph noise
of deep-submicrometer MOSFET’s,” IEEE Electron Device
Letters, vol. 11, p. 90 (1990).
[7] M. O. Andersson, and Z. Xiao, “Model based on trap-
assisted-tunneling for two-level current fluctuations in
submicrometer metal-dioxide-silicon diodes,” Physical
Review B, vol. 41, p. 9836 (1990).
[8] K. R. Farmer, C. T. Rogers, and R. A. Buhrman, “Localized-
state interactions in metal-oxide-semiconductor tunnel
diodes,” Physical Review Letters, vol. 58, p. 2255 (1987).
[9] B. Neri, P. Olivo, and B. Riccò, “Low-frequency noise in
silicon-gate metal-oxide-silicon capacitors before oxide
breakdown,” Applied Physics Letters, vol. 51, p. 2167
(1987).
[10] E. Miranda, J. Suñé, R. Rodríguez, M. Nafría, and X.
Aymerich, “Switching behavior of the soft breakdown
conduction characteristic in ultra-thin ( >5 nm) oxide MOS
capacitors,” International Reliability Physics Symposium
(IRPS) Proceedings, p. 42 (1998).
[11] I. Polishchuk, T. J. King, and C. Hu, “Physical origin of
SILC and noisy breakdown in very thin silicon nitride gate
dielectric,” Device Research Conference (DRC), Conference
Digest, p. 20 (2001).
[12] K. F. Schuegraf and C. Hu, “Hole injection SiO/sub 2/
breakdown model for very low voltage lifetime
extrapolation,” IEEE Trans. Electron Devices, vol. 41, p.
761 (1994).
[13] H. T. Huang and M. J. Chen, “A novel sphere-based
statistical model for local oxide thinning induced gate
oxide breakdown,” Extended Abstracts of International
Conference on Solid State Devices and Materials (SSDM), p.
246 (2000).
[14] E. Simoen, B. Dierickx, C. L. Claeys, and G. J. Declerck,
“Explaining the amplitude of RTS noise in submicrometer
MOSFETs,” IEEE Trans. Electron Devices, vol. 39, p. 422
(1992).
[15] E. Miranda, and J. Suñé, “A function-fit model for the
soft breakdown failure mode,” IEEE Electron Device Letters,
vol. 20 , p. 265 (1999).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文