跳到主要內容

臺灣博碩士論文加值系統

(54.80.249.22) 您好!臺灣時間:2022/01/20 07:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊鎮吉
研究生(外文):Chen-Chi Yang
論文名稱:超低介電常數材料熱傳導係數之研究
論文名稱(外文):A Study on Thermal Conductivity of Ultra Low Dielectric Constant Materials
指導教授:崔秉鉞
指導教授(外文):Bing-Yue Tsui
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:46
中文關鍵詞:介電常數材料熱傳導係數
外文關鍵詞:Low Dielectric ConstantThermal Conductivitythree omega method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:791
  • 評分評分:
  • 下載下載:142
  • 收藏至我的研究室書目清單書目收藏:1
隨著製程技術的進步,散熱問題將會嚴重影響積體電路的性能與可靠度。三倍頻法(3ω method)可以簡單、有效地量得等向性與非等向性的熱傳導係數。它不僅可以減少量測上等待熱平衡的時間,也不需要精確量出電阻就可由一倍頻與三倍頻的電壓粹取出待測物的上升溫度。本論即利用自行建立之三倍頻法(3ω method)測量系統,分析多種次世代與次次世代低介電常數材料之熱傳導性質,並提出物理模型。
實驗的結果顯示非孔隙的有機旋塗介電質(Organic Spin-On-Dielectric, Organic SOD)本身熱傳導特性不佳,不適合以摻入孔隙的方式降低介電質常數。碳摻雜氧化矽(Carbon Doped Oxide, CDO)因為較佳的熱傳導特性與低介電常數,是極有潛力的次世代介電質材料。對作為銅擴散障礙層來說,非晶質的碳化矽 (a-SiC:H) 的熱傳導係數遠低於晶體狀態的碳化矽,也比氮化矽低三倍以上,但是因為厚度較薄且熱傳導係數比主介電質高,對散熱應該不會造成太大的影響。
摻入的孔隙在高孔隙度的二氧化矽(silica)中傾向於水平排列,造成非等向性熱傳導係數與非等向性介電質常數。我們提出一個序列-平行混合的模型(Serial-Parallel Hybrid model)來模擬垂直跟水平方向的,孔隙度對熱傳導係數與孔隙度對介電質常數的關係。不均勻排列的孔隙使得傳統的三倍頻法二維模型不適用,本論文利用序列-平行混合模型提出一個擷取水平方向熱傳導係數以及介電質常數的方法。
本論文建立三倍頻測量系統,結合自行發展的序列-平行混合模型,可以正確的擷取水平與垂直方向的熱傳導係數以及介電質常數,並可以分析孔隙分佈情況,對低介電常數材料的基本性質分析極為重要,也是進一步分析多層導線散熱以及訊號延遲的重要基礎。

With the progress of integrated circuit process technology, thermal management becomes an important issue to improve performance and reliability of integrated circuits. The 3ω method is easy, effective, and useful for extracting the thermal conductivity including the isotropic and anisotropic characteristics. This method not only costs less time to reach the thermal balance but also can extract the temperature rise on the heater/thermometry without achieving its exact resistance. In this thesis, the 3ω method measurement system was set-up and the thermal conductivity of next generation low dielectric constant materials was investigated.
Several dielectric films were investigated, including PECVD silicon dioxide, PECVD silicon nitride, Organic Spin-On-Dielectric (Organic SOD), Carbon Doped Oxide (CDO), amorphous SiC:H, and porous silica in view of the thermal conductivity and dielectric constant. The non-porous Organic SOD material has high dielectric constant and low thermal conductivity. Hence, it is not suitable to scale down the dielectric constant by introducing pores into the film. The CDO material is the best dielectric solution because of its relatively low dielectric constant and relatively high thermal conductivity. The thermal conductivity of a-SiC:H is much lower than that of crystalline SiC. Fortunately, because of the thinner thickness and relatively higher thermal conductivity compared with main IMD, the a-SiC:H film does not play the dominant role on the thermal management. However, it needs more simulation and experiment to understand the temperature contribution of the SiC film within the realistic multilevel structure with thermal vias.
The porous silica material has strong anisotropic characteristic in both thermal conductivity and dielectric constant. We propose a Serial-Parallel Hybrid model to explain the correlation between porosity and thermal conductivity and that between porosity and dielectric constant in both in-plane and cross-plane components. The pores in the higher porosity silica film tend to distribute horizontally. This distribution of the pores in the dielectric film is the main factor inducing the anisotropic characteristic of both thermal conductivity and dielectric constant. The non-uniform distribution of pores also defeat the 3ω method. A novel method based on the hybrid model was proposed to extract the in-plane thermal conductivity and dielectric constant of such film.
The anisotropic characteristic of the thermal conductivity may be accompanied by the anisotropic dielectric constant, which is a greatly complicated problem in the RC delay simulation of the circuits. Efficient thermal and structural design of future generation IC with porous low-K materials should take these factors into consideration.

Contents
Abstract (Chinese) I
Abstract (English) II
Acknowledge IV
Contents V
Table Lists VIII
Figure Captions IX
Chapter 1 Introduction
1.1 Thermal Problem on Integrated Circuit 1
1.2 The Thermal Issue of Low-K Materials 2
1.3 Isotropic or Anisotropic? 4
1.4 Introduction to Thermal Conductivity Measurement Methods 5
1.4.1 Photothermal Method 6
1.4.2 Parallel Metal Line Method 7
1.4.3 Mesa Vertical Conductivity Method 7
1.4.4 3ω Method 8
1.5 Thesis Organization 8
Chapter 2 Theory of 3ω method
2.1 Formula Derivation 10
2.1.1 Isotropic (1D) Model 10
2.1.1.1 Thick Film Model 11
2.1.1.2 Thin Film Model 13
2.1.2 Anisotropic (2D) Model 14
2.1.3 Extraction of Temperature Rise on the Metal Line 16
2.2 Sensitivity Analysis 18
Chapter 3 Experiment Procedure
3.1 System Implementation 20
3.2 Sample Preparation 22
3.3 Characterization technique 23
3.3.1 Ellipsometry 23
3.1.2 N&K Analyzer 23
3.1.3 Fourier-Transformed Infra-red (FTIR) 24
3.1.4 The C-V measurement 24
Chapter 4 Results and Discussion
4.1 Verification of the 3ω Method 26
4.2 Characteristics of Porous Silica 27
4.2.1 Correlation between Porosity and Thermal conductivity 28
4.2.2 Conventional Anisotropic Models 29
4.2.3 Parallel Serial Hybrid Model 32
4.2.4 Thermal Stability of Porous Silica 35
4.3 Thermal Conductivity of other Low-K Materials
4.3.1 CDO 37
4.3.2 Organic SOD 38
4.3.3 Amorphous SiC:H 38
Chapter 5 Conclusions and Future Work
5.1 Conclusions 40
5.2 Future Work 41
Reference 43

[1] Anurag Jain, Svetlana Rogojevic, Shom Ponoth, William N. Gill, Joel L. Plawsky, Eva Simonyi, Shyng-Tsong Chen and P. S. Ho, “Processing dependent thermal conductivity of nanoporous silica xerogel films”, J. Appl. Phys. Vol. 91, No. 5, pp. 2275 -3281, 2002.
[2] D. G. Cahill, in Microscale Energy Transport, edited by C.-L. Tien, A.Majumdar, and F. M. Gerner (Taylor & Francis, Washington DC, 1998), pp. 95.
[3] K. E. Goodson, Y. S. Ju, and M. Asheghi, in Microscale Energy Transport, edited by C.-L. Tien, A. Majumdar, and F. M. Gerner (Taylor & Francis,Washington, DC, 1998), pp. 229.
[4] Ruxandra M. Costescu, Andrew J. Bullen, George Matamis, Keith E. O’Hara, and David G. Cahill, “Thermal conductivity and sound velocities of hydrogen-silsesquioxane low-k dielectrics”, Phys. Rev. B Vol. 65, pp. 094205, 2002.
[5] Katsuo Kurabayashi, Member, IEEE, Mehdi Asheghi, Maxat Touzelbaev, and Kenneth E. Goodson, Associate Member, IEEE, “Measurement of the Thermal Conductivity Anisotropy in Polyimide Films”, IEEE J. of Microelectromechanical Systems Vol. 8, No. 2, pp. 180-191, 1999.
[6] Philip B. Allen and Joseph L. Feldman, “Thermal conductivity of disordered harmonic solids”, Phys. Rev. B, Vol. 48, No. 17, pp. 12581—12588, 1993.
[7] D. G. Cahill, M. Katiyar, and J. R. Abelson, “Thermal conductivity of a-Si:H thin films”, Phys. Rev. B, Vol. 50, No. 9, pp. 6077—6081, 1994.
[8] Chuan Hu, Michael Morgen, Paul S. Ho, Anurag Jain, William N. Gill, Joel L. Plawsky, and Peter C. Wayner, Jr, “Thermal conductivity study of porous low-k dielectric materials”, Appl. Phys. Lett. Vol. 77, No. 1, pp. 145-147, 2000.
[9] Y.S. Ju, K. Kurabayashi, K.E. Goodson, “Thermal characterization of anisotropic thin dielectric Films using harmonic Joule heating”, Thin Solid Films Vol. 339, pp. 160-164, 1990.
[10] Xianping Lu, Ove Nilsson, Jochen Fricke and Richard W. Pekala, “Thermal and electrical conductivity of monolithic carbon aerogels”, J. Appl. Phys. Vol. 73, No. 2, pp. 581-584, 1993.
[11] Friedemann Völklein and Tomas Stärz, “Thermal Conductivity of Thin Films — Experimental Methods and Theoretical Interpretation”, IEEE 16th International Conference on Thermoelectrics, pp. 711-718, 1997.
[12] Kenneth E. Goodson and Y. Sungtaek Ju, “Heat conduction in novel electronic films”, Annu. Rev. Mater. Sci. Vol. 29, pp. 261-293, 1999.
[13] 0. W. Käding, H. Skurk, and K. E. Goodson, “Thermal conduction in metallized silicon-dioxide layers on silicon”, Appl. Phys. Lett. Vol. 65, No. 13, pp. 1629-1631, 1994.
[14] A. Salazar, A. Sànchez-Lavega, A. Ocàriz, J. Guitonny, J. C. Pandey, D. Fournier, and A. C. Boccara, “Novel results on thermal diffusivity measurements on anisotropic materials using photothermal methods”, Appl. Phys. Lett. Vol. 67, No. 5, pp. 626-628, 1995.
[15] E. T. Swartz and R. O. Pohl, “Thermal resistance at interfaces”, Appl. Phys. Lett. Vol. 51, No. 26, pp. 2200-2202, 1987.
[16] David G. Cahill and R. O. Pohl, “Thermal conductivity of amorphous solids above the plateau”, Phys. Rev. B, Vol. 35, No. 8, pp. 4067—4073, 1987.
[17] David G. Cahill, “Thermal conductivity measurement from 30 to 750K : the 3ω method”, Rev. Sci. Instrum. Vol. 61, No. 2, pp. 802-808, 1990.
[18] H. S. Carslaw and J. C. Jaeger, Conduction of heat in Solids (Oxford University Press, Oxford, 1959), p. 193.
[19] Tables of Integral Transforms, Vol. I, edited by A. Erdelyi (MCGRAW-Hill, New York, 1954), p.49.
[20] S.-M. Lee and David G. Cahill, “Heat transport in thin dielectric films”, J. Appl. Phys. Vol. 81, No. 6, pp. 2590-2594.
[21] T. Borca-Tasciuc, A. R. Kumar, and G. Chen, “Data reduction in 3vmethod for thin-film thermal conductivity determination”, Rev. Sci. Instrum. Vol. 72, No. 4, pp. 2139-2147, 2001.
[22] Jung Hun Kim, Albert Feldman, and Donald Novotny, “Application of the three omega thermal conductivity measurement method to a film on a substrate of finite thickness”, J. Appl. Phys. Vol. 86, No. 7, pp. 3959-3963, 1999.
[23] Theodorian Borca-Tasciuc, Weili Liu, Jianlin Liu, Kang L. Wang, and Gang Chen, “ANISOTROPIC THERMAL CONDUCTIVITY OF A Si/Ge QUANTUM DOT SUPERLATTICE”, Proc. of the ASME Heat Transfer Division Vol. 366-2, pp. 381-384, 2000.
[24] L. Lu, W. Yi, and D. L. Zhang, “3ω method for specific heat and thermal conductivity measurements”, Rev. Sci. Instrum. Vol. 72, No. 7, pp. 2996-3003, 2001.
[25] A. Jain, S. Rogojevic, S. Ponoth, N. Agarwal, I. Matthew, W.N. Gill, P. Persans, M. Tomozawa, J.L. Plawsky and E. Simonyi, “Porous silica materials as low-k dielectrics for electronic and optical interconnects”, Thin Solid Films Vol. 398-399, pp. 513-522, 2001.
[26] D.J. Taylor, P.F. Fleig and S.L. Hietala, “Porous silica materials as low-k dielectrics for electronic and optical interconnects”, Thin Solid Films Vol. 332, pp. 257-261, 1998.
[27] O. S. Heavens, Optical Properties of Thin Solid Films, Dover, New York, 1965 p. 177-180.
[28] M. Kaviany, Principles of Heat Transfer in Porous Media (Springer, New York, 1991).
[29] R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical Properties of Granular Silver and Gold Films”, Phys. Rev. B Vol. 8, No. 8, pp. 3689, 1973.
[30] D. E. Aspnes, J. B. Theeten and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry”, Phys. Rev. B Vol. 20, No. 8, pp. 3292, 1979.
[31] K. Buchanan, K. Beekmann, K. Giles, J-C. Yeoh and H. Donohue, “Characterisation and integration of CVD ultra low k films (k<2.2) for dual damascene IMD applications”, Proc. Advanced Metallization Conference, 2002.
[32] Kuo-Lung Fang, Bing-Yue Tsui, Chen-Chi Yang, Mao-Chieh Chen, Shyh-Dar Lee, Knut Beekmann, Tony Wilby, Kath Giles, and Sajid Ishaq, “Electrical and Material Stability of Orionä CVD Ultra Low-k Dielectric Film for Copper Interconnection”, IEEE International Interconnect Technology Conf., 2002, pp. oo-xx.
[33] Neudeck, Philip G. “Recent Progress in Silicon Carbide Semiconductor Electronics Technology”; www.lerc.nasa.gov/www/SiC/SiCReview.htm.
[34] M. Bhatnagar and B. J. Baliga, "Comparison of 6H-SiC, 3C-SiC, and Si for Power Devices," IEEE Transactions on Electron Devices, vol. 40, pp. 645-655, 1993.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top