跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/29 20:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥如
研究生(外文):Yan Ru Chen
論文名稱:互補式金氧半導場效電晶體影像感測器技術(I)-一種單一路徑讀取電路及其可程式增益放大器
論文名稱(外文):CMOS Image Sensor Technology (I)-A Single-Path Readout Circuit and its Programmable Gain Amplifier
指導教授:吳慶源
指導教授(外文):Ching-Yuan Wu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:66
中文關鍵詞:影像感測器
外文關鍵詞:CMOS Image Sensor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要:
由於互補式金氧半導體技術的進步,近年來互補式金氧半導體影像感測器已經受到廣泛的注意,主要的原因在於顧客對於微型化、低功率、低成本的需求。互補式金氧半導體影像感測器提供了整合超大型積體電路中各個系統在同一個晶片上的機會,並且減少了電路版上分離的電路元件數量,降低包裝成本。一個包含時序控制器,感測器陣列,訊號處理器,類比到數位轉換器,數位介面的單晶片照相機是可預期的。在標準邏輯電路電壓提供下,此單晶片照相機的功率消耗僅有數十毫瓦,因此非常適合在可攜式電子產品的應用上。
互補式金氧半導體影像感測器包含了三個重要部分:第一個是像素陣列,第二個是晶片內部的訊號處理,而第三個是可程式化增益放大器。互補式金氧半導體影像感測器運用在高解析度方面時,像素尺寸將會是一個關鍵,所以像素的結構與佈局的技巧變得相當重要。一種含有三個電晶體的主動式像素感測器的架構被採用來克服此問題。除此之外,一種用以消除製程上的變動所產生之雜訊的完全單一路徑的讀取電路將被採用。可程式化增益放大器則是用來產生彩色濾波器圖樣。
互補式金氧半導體影像感測器使用台積電0.25微米混合訊號互補式金氧半導體標準製程,操作在25百萬赫茲。

Abstract:
Because of the progress in CMOS technology there has been a growing interest in CMOS image sensors recently. The major reason for this interest is the customer demand for miniaturized, low-power, and low-cost digital cameras. CMOS image sensors offer a great potential to integrate a significant amount of VLSI electronics on a single chip and reduce the discrete components and packaging costs. It is now straightforward to envision a single-chip camera that has integrated timing and control electronics, sensor array, signal processing electronics, analog-to-digital converter (ADC), and full digital interface. Such a camera-on-a-chip will operate with standard logic supply voltages and consume power measured in the tens of milli-watts. Therefore, the camera-on-a-chip is very suitable for portable electron ic product applications.
The CMOS image sensor includes several important parts: the first part is pixel array, the second part is on-chip signal processing, and the third part is programmable-gain amplifier. The pixel size will be the key point for CMOS image sensors in high-resolution applications, so the structure and layout technique of the pixel become quite important. An active pixel sensor (APS) with three transistors is proposed to overcome the problem. Furthermore, a fully single-path readout circuit is proposed to reduce the noises come from the process variation. The programmable gain amplifier will be used to create color-filter-patterns.
The CMOS image sensor uses the TSMC 0.25μm mixed signal CMOS standard process and operates at 25MHz.

Contents
Abstract
Acknowledgements
Contents
Figure Captions
Table Captions
Chapter 1 Introduction
Chapter 2 Basic Operation and Structure of CMOS Image Sensor
2.1 History of Solid-State Image Sensors
2.2 Pixel Circuits of CMOS Image Sensor
2.2.1 Passive Pixel Structure
2.2.2 Photogate-Type Active Pixel Sensor
2.2.3 Photodiode-Type Active Pixel Sensor
2.3 Photodiode-Type APS Design and Simulation
2.3.1 Mathematical Analysis of APS with Photodiode
2.3.2 Photodiode Type APS Design and Pixel Layout
Consideration
2.4 Comparison of Different Pixel Types
Chapter 3 A Fully Single-Path Readout Circuit and the Noise Analysis
3.1 Operation of Correlated-Double-Sampling Circuit
3.2 Previous Single-Path Readout Circuit
3.3 A New Fully Single-Path Readout Circuit
3.3.1 Principle and Operation of the Readout Circuit
3.3.2 Simulation Results
3.3.3 Reference-Voltage Generator Circuit (Vref)
3.4 Noise Types in CMOS Image Sensor
Chapter 4 Programmable Gain Amplifier & Architecture
4.1 The Operation of the Programmable Gain Amplifier
4.1.1 The Operation Steps of the PGA
4.1.2 The Operational Amplifier in the PGA
4.2 The Simulation Results of the PGA
4.2.1 The Simulation Results of the PGA
4.2.2 The Simulation Results of the Operational Amplifier
4.3 Architecture of CMOS Image Sensor
Chapter 5 Summary and Discussions

References
[1] E. R. Fossum, “CMOS Image Sensors: Electronic Camera-on-a-chip”, IEEE Trans. on Electron Devices, vol.44, No.10, pp.1689-1698, Oct. 1997.
[2] S. Morrison, “A new type of photosensitive junction device”, Solid-State Electron., vol.5, pp.485-494, 1963.
[3] J. Horton, R. Mazza, and H. Dym, ”The scanistor-A solid-state image sensor”, IEEE, vol.52, pp.1515-1528, 1964.
[4] M. A. Schuster and G. Stull, “A monolithic mosaic of photon sensors for solid state imaging applications”, IEEE Trans. on Electron Devices, vol.ED-13, pp.907-012, 1966.
[5] G.. P. Weckler, “Operation of p-n junction photodetectors in a photon fulx integration mode”, IEEE Journal of Solid-State Circuits, vol.SC-2, pp.65-73, 1967.
[6] R. Dyck and G. Weckler, “ Integrated arrays of silicon photodetectors for image sensing”, IEEE Trans. on Electron Devices, vol.ED-15, pp.196-201, 1968.
[7] P. Noble, “Self-scanned silicon image detector arrays”, IEEE Trans. on Electron Devices, vol.ED-15, pp.202-209, 1968.
[8] W. S. Boyle and G. E. Smith, “Charged-coupled semiconductor devices”, Bell Syst. Tech. J. vol.49, pp.587-593, 1970.
[9] R. Melen, “The tradeoff in monolithic image sensors: MOS versus CCD”, Electron., vol.46, pp.106-111, May. 1973.
[10] S. Ohba et al., “MOS area sensor: Part II-Low noise MOS area sensor with antiblooming photodiodes”, IEEE Trans. on Electron Devices, vol.ED-27, pp.1682-1687, Aug. 1980.
[11] K. Sedra, S. Terakawa, Y. Hiroshima, and T. Kunii, “Analysis of charge-priming transfer efficiency in CPD image sensors”, IEEE Trans. on Electron Devices, vol.ED-31, pp.1324-1328, Sept. 1984.
[12] H. Ando et al., “Design consideration and performance of a new MOS image device”, IEEE Trans. Consumer Electronics, vol.ED-32, pp.1484-1489, May. 1985.
[13] D. Renshaw, P. Denyer, G. Wang and M. Lu, “ASIC image sensors” IEEE International Symposium of Circuits and Systems, pp.3038-3041, 1990.
[14] S. Mendis, S. Kemeny and E. R. Fossum, “CMOS active pixel image sensor”, IEEE Trans. on Electron Devices, vol.ED-41,pp.452-453, 1994.
[15] S. Mendis, S. Kemeny and E. R. Fossum, “A 128*128 CMOS active pixel image sensor for highly integrated imaging systems”, IEEE IEDM Tech. Dig.,pp.583-586, 1993.
[16] F. Andoh, K. Taketoshi, J. Yamazaki, M. Sugawara, Y. Fujita, K. Mitani, Y. Matuzawa, K. Miyata, and S. Araki, “A 250,000 pixel image sensor with FET amplification at each pixel for high speed television cameras”, IEEE ISSCC Tech. Dig. pp.212-213, 1990.
[17] Donald A. Neamen, Semiconductor Physics and Devices, Second Edition, New York: McGraw-Hill, 1997.
[18] G. Meynants, B. Dierickx, and D. Scheffer, "CMOS active pixel image sensor with CCD performance", AFPAEC Europto/SPIE, Zurich, 18-21 may 1998; proc. SPIE, vol. 3410, pp. 68-76, 1998.
[19] R. H. Nixon, S.E. Kemeny, C. O. Staller, and E. R. Fossum, “256/spl times/256 CMOS active pixel sensor camera-on-a-chip”, Solid-State Circuits Conference, 1996. Digest of Technical Papers. 42nd ISSCC, pp.178-179, 1996 IEEE International, 1996.
[20] Chi-Huang Liao and Ching-Yuan Wu, “CMOS Image Sensor Technology (I)” Master thesis, National Chiao Tung University, 2001.
[21] H. Tian, B. Fowler, and A. El Gamal, “Analysis of Temporal Noise in CMOS Photodiode Active Pixel Sensor”, IEEE Journal of Solid-State Circuits, vol.36, No.1, pp.92-101, January 2001.
[22] “HP part number HDCS-2000/2100/1000/1100 product technical specification revision 3.0,” Hewlett-Packard Company, 1020 N.E Circle Boulevard, Corvallis, Oregon 97330.
[23] Behzad Razavi, Design of Analog CMOS Integrated Circuits, International Edition, New York: McGrew-Hill,2001
[24] Paul R. Gray and Robert G.. Meyer, Analysis and Design of Analog Integrated Circuits, Fourth Edition, John-Wiely & Sons, 2001

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top