跳到主要內容

臺灣博碩士論文加值系統

(23.20.20.52) 您好!臺灣時間:2022/01/24 18:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉志益
研究生(外文):Chih-Yi Liu
論文名稱:鈦酸鍶作為閘極氧化層之電性與電容量測模型之研究
論文名稱(外文):Electrical Properties of SrTiO3 as a Gate Dielectric and Model of Capacitance Measurement
指導教授:曾俊元
指導教授(外文):Tseung-Yuen Tseng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
中文關鍵詞:鈦酸鍶量測模型閘極氧化層
外文關鍵詞:SrTiO3gate dielectriccapacitance measurement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以物理氣相交流濺鍍法成長鈦酸鍶薄膜,控制不同的成長條件包括成長基板溫度、不同氧偏壓、成長氣壓、電漿功率,比較不同成長條件和薄膜厚度的鈦酸鍶薄膜作為閘極氧化層之電性。以鈦酸鍶薄膜製作金屬/絕緣層/半導體 (metal-insulator-semiconductor) 的電容結構,然後量測其電容性質以及漏電流特性。除了探討一般的常見的成長參數對薄膜電性與物性的影響外,並利用氮摻雜與熱處理的方式來改善電容與漏電流性質,在氮摻雜的方式上主要分為兩種方式包括:離子佈植及利用一氧化二氮(N2O)成長犧牲層來造成表面殘餘的氮原子。在電容的量測過程中,發現有嚴重的頻散效應,但文獻上所得的模型都無法有效解決高介電閘極氧化層在電容量測時的頻散效應,於是利用並聯一個電容與消散因子 (dissipation factor),再串聯量測時不可避免的寄生電阻與電感組成一個包含四個元件的電容量測修正模型,原本電容量測時的頻散現象經由這修正模型校正之後,成功地消除頻散效應,並且利用此修正模型可以得到MIS結構下的損耗正切(loss tangent),這是在其他相關的研究上很少提到的。

The influences of the processing parameters on physical and electrical properties of SrTiO3 (STO) thin films deposited on Si were investigated. Nitrogen-incorporation method and repeated-spike-heating method were employed to improve the electrical properties of STO for obtaining high capacitance and low leakage current density. The nitrogen-incorporation method can retard the formation of interfacial layers and the repeated-spike-heating method can improve the thermal uniformity of the wafers. We have also developed a four-elements model of MOS capacitor to improve the capacitance-voltage measurement of high-k gate dielectrics. The four-element model includes intrinsic capacitance, loss tangent, series resistance and parasitic inductance, and all elements extracted by measuring the capacitor at two independent frequencies. We can find it always has 20% frequency dispersion of capacitance if the frequency is more than 100 kHz. The frequency dispersion of capacitance is dependent on series resistance and parasitic inductance. Besides, the dissipation factor at 1 MHz is usually 30 times than the corrected dissipation factor.

CHAPTER 1 Introduction
1.1 The trend of gate dielectrics for CMOS technology
1.2 Basic properties of STO thin films
1.3 Motivation
1.4 Thesis Organization
CHAPTER 2 Experimental Procedures
2.1 Sputtering System
2.2 STO Thin Films Preparation
2.3 Physical Measurement
2.3.1 Ellipsometry
2.3.2 Grazing Incident X-Ray Diffraction (GID)
2.3.3 Transmission Electron Microscopy (TEM)
2.3.4 n&k analyzer
2.4 Electrical Measurement
2.4.1 Capacitance-voltage (C-V) measurements
2.4.2 Current-voltage (I-V) measurements
CHAPTER 3 A Two-Frequency Method of Capacitance Measurement for High-k Gate Dielectrics.
3.1 Introduction
3.2 Theory
3.3 Experiment procedure
3.4 Results discussion
3.4 Summary
CHAPTER 4 Electrical properties of STO thin film
4.1 Experiment
4.2 Results and Discussion
4.2.1 Effect of substrate temperature and thickness
4.2.2 Effect of OMR, work pressure and plasma power
4.2.3 Rapid thermal annealing in different ambient
4.2.4 Nitrogen incorporation before STO thin films growth
4.2.5 The Effect of Repeated Spike Heating
4.3 Summary
CHAPTER 5 Conclusions and future work

[1] International Technology Roadmap for Semiconductor, 2000 Update Semconductor Industry Association.
[2] S. Song et al., VLSI Symp., p.190 (2000).
[3] Song, S.; Yi, J.H.; Kim, W.S.; Lee, J.S.; Fujihara, K.; Kang, H.K.; Moon, J.T.; Lee, and M.Y.,” CMOS device scaling beyond 100 nm,” Tech. Dig. Int. Electron Devices Meet. 2000, p.235 (2000).
[4] S. V. Hattangady et al. SPIE Symp. Microelec Manf., p.1 (1998).
[5] G. Baccarani, M.R. Wordeman, and R. H. Dennard, IEEE Trans. Electron Devices 31, 452
(1984).
[6] T. Hori, Gate Dielectrics and MOS ULSIs (Springer, New York, 1997).
[7] S. M. Sze, Physics of Semiconductor Devices, 2nd ed.(Wiley, New York, 1981).
[8] R. Rios and N. D. Arora, Tech. Dig. Int. Electron Devices Meet. 1994, 613 (1994).
[9] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982).
[10] G.Timp et.al. Tech. Dig. Int. Electron Devices Meet. 1997, 930 (1997).
[11] D. A. Buchanan and A. D. Marwick, D. J. DiMaria, and L. Dori, “Hot-electron-induced hydrogen redistribution and defect generation in metal-oxide-semiconductor capacitors,” J. Appl. Phys. 76, 3595(1994)
[12] J. H. Stathis and D. J. DiMaria, “Reliability projection for ultra-thin oxides at low
voltage,” Tech. Dig. Int. Electron Devices Meet. 1998, 167 (1998).
[13] B. E. Weir, M. A. Alam, J. D. Bude, P. J. Siliverman, A. Ghetti, F. Baumann, P. Diodato, D. Monroe, T. Sorsch, G. L. Timp, Y. Ma, M.M. Brown, A. Hamad, D. Hwang, P. Mason, Semicond. Sci. Technol. 15, 455 (2000)
[14] M. Alam, J. Bude, B. Weir, P. Silvermanm, A.Ghetti, D.Monroe, K. P. Cheung, and S. Moccio, “An anode hole injection percolation model for oxide breakdown-the "doom's day" scenario revisited,” Tech. Dig. Int. Electron Devices Meet. 1999, 715 (1999).
[15] A. Chatterjee, R. A. Chapman, K. Joyner, M. Otobe, S. Hattangady, M. Bevan, G. A. Brown, H. Yang, Q. He, D. Roger et al.,” CMOS metal replacement gate transistors using tantalum pentoxide gate insulator,” Tech. Dig. Int. Electron Devices Meet. 1998. p.777 (1998)
[16] P. K. Roy and I. C. Kizilyalli, “Stacked high- gate dielectric for gigascale integration of
metal—oxide—semiconductor technologies,” Appl. Phys. Leet. 72, 2835(1998)
[17] H. T. Lue, T. Y. Tseng, “Application of on-wafer TRL calibration on the measurement of microwave properties of Ba0.5Sr0.5TiO3 thin films”, IEEE Trans. Ultrasonics, Ferroelectric and Frequency Control, vol. 48, no. 6, pp, 1640-1647, November, 2001.
[18] H. T. Lue, T. Y. Tseng and G. W. Huang, “A method to characterize the dielectric and interfacial properties of metal — insulator — semiconductor structures by microwave measurement”, Journal of Appl. Phys., to be printed in April, 2002.
[19] R. B. van Dover, ”Amorphous lanthanide-doped TiOx dielectric films,” Appl. Phys. Lett
74, 3041 (1999)
[20] K. Eisenbeiser, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L.Salem, S. Bradshaw, and C. D. Overgaard, “Field effect transistors with SrTiO3 gate dielectric on Si,” Appl. Phys. Lett. 76, 1324 (2000)
[21] Z. Yu, J. Ramdani, J. A. Curless, J. M. Finder, C. D. Overgaard, R. Droopad, K. W. Eisenbeiser, J. A. Hallmark, W. J. Ooms, J. R. Conner, and V. S. Kaushil, J. Vac. Sci. Technol. B 18, 1653 (2000).
[22] Z. Yu, J. Ramdani, J. A. Curless, C. D. Overgaard, J. M. Finder, R. Droopad, K. W. Eisenbeiser, J. A. Hallmark, W. J. Ooms, and V. S. Kaushil, J. Vac. Sci. Technol. B 18, 2139 (2000).
[23] Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S.—H. Lo, G. A. Sai-Halasz, R. G. Viswanathan, H.-J. C. Wann, S. J. Wind, and H.-S. P. Wong, Proc. IEEE 85, 486 (1997).
[24] D. Barlage, R. Arghavani, G. Dewey, M. Doczy, B. Doyle, J. Kavalieros, A. Murthy, B. Roberds, P. Stokley and R. Chau “High-Frequency Response of 100nm Integrated CMOS Transistors with High-K Gate Dielectrics,” International Electron Device Meeting, 2001.
[25] K. J. Yang and C. Hu, “MOS capacitance measurements for high-leakage thin dielectrics”, IEEE Trans. Electron Devices, vol. 46, pp. 1500-1501, July, 1999.
[26] K. Eisenberg, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw, and C. D. Overgaard, “Field effect transistor with SrTiO3 gate dielectrics”, Appl. Phys. Lett., vol. 76, pp. 1324-1326, 2000.
[27] Berkeley Device Group [Online]. Available: www.device.eecs.berkeley.edu /qmcv/html
[28] Lahir Shaik Adam, Mark E. Law, Omer Dokumaci, and Suri Hegde, “A Physical Model for Implantation Nitrogen Diffusion and its Effect on Oxide Growth,” Tech. Dig. Int. Electron Devices Meet. 2000, 508 (2000).
[29] C. C. Hong, C. Y. Chang, C. Y. Lee, and J. G. Hwu, “Reduction in Leakage Current of Low-Temperature Thin-Gate Oxide by Repeated Spike Oxidation Technique,” IEEE Electron Device Lett., vol. 23, p.28, Jan. 2002.
[30] C. C. Hong, C. Y. Lee, Y. L. Hsieh, C. C. Liu, I. K. Fong, and J. G. Hwu, “Improvement in oxide thickness uniformity by repeated Spike Oxidation (RSO),” IEEE Trans. Semiconduct. Manufact., pp. 227-231, Aug.2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top