跳到主要內容

臺灣博碩士論文加值系統

(3.90.139.113) 您好!臺灣時間:2022/01/16 18:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹文炘
研究生(外文):Wen-Hsin Chan
論文名稱:選擇性液相沉積氧化膜在超淺接面矽化鎳製程之應用
論文名稱(外文):Application of Selective Liquid-Phase Deposition to Ultra-Shallow Junction and Nickel Silicide Process
指導教授:葉清發
指導教授(外文):Ching-Fa Yeh
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:矽化鎳熱穩定性超淺接面漏電流選擇性液相沉積
外文關鍵詞:NiSithermal stabilityultra-shallow junctionleakage currentS-LPD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是研究選擇性液相沉積氧化膜在超淺接面矽化鎳製程之應用。首先,我們研究矽化鎳在不同的基板上的行為, 而基板包括了單晶矽、複晶矽、非晶矽及非晶狀複晶矽基板。我們發現在單晶矽及非晶狀複晶矽上,以200 Å厚的鎳在400℃與650℃快速熱回火處理形成的矽化鎳顯示了穩定且較低的片電阻。經由矽化鎳在複晶矽、非晶矽和非晶狀複晶矽上的掃瞄式電子顯微鏡圖片觀察及不同線寬的片電阻量測,我們發現了深色斑點或結塊的出現會嚴重的影響矽化鎳的片電阻。所以,在這些不同的基板上以快速熱回火形成矽化鎳的最佳製程溫度範圍是從400℃到550℃。對於較薄的矽化鎳,它的片電阻值較高且製程溫度變窄。接著,我們藉由第二次的快速熱回火處理及較長時間的600℃爐管回火的方式來測試鎳矽化物的熱穩定性。經由較長時間的回火處理,在非晶矽上的矽化鎳有較好的熱穩定性且幾乎維持相同的片電阻。但在單晶上的矽化鎳,鎳會持續的擴散並造成片電阻的增加。與柱狀複晶矽做比較,以相同的熱處理後,矽化鎳在非晶狀複晶矽上較為穩定。
然後我們利用最佳的條件製作矽化鎳n+/p 超淺接面二極體。我們發現漏電流隨著矽化鎳形成溫度的增加而減少。這是由於矽化鎳完全形成所致。我們也發現漏電流會隨著鎳的厚度增加而增加,這個現象導因於矽化鎳的厚度靠近接面的空乏區。我們也研究各種接觸孔數目的漏電流,它顯示了接觸孔越多,漏電流會越大。
最後,我們開發了選擇性液相沈積的製程來製作接觸孔。這是種在沒有電漿環境下的技術。與傳統活性離子蝕刻製程做比較,選擇性液相沈積顯示了較均勻且較低的漏電流分佈。根據這些結果,我們相信選擇性液相沈積在未來先進元件製作上是極可行的技術。

This thesis studies the application of S-LPD to ultra-shallow junction and nickel silicide process. First, we investigated the sheet resistance behavior of Ni silicide on different substrates including crystal Si (c-Si), polycrystalline Si (poly-Si), amorphous Si (a-Si) and a-poly Si. We found the planer NiSi formed with 200 Å thick Ni on c-Si and a-poly Si is stable and shows low sheet resistance between 400℃ and 650℃ RTA. From the SEM micrographs observation and the line-width sheet resistance measurement of NiSi on poly-Si, a-Si, and a-poly Si, we found the appearance of dark spots or agglomeration would affect the sheet resistance of Ni silicide seriously. So the optimum process window of NiSi RTA temperature on different substrates is ranging from 400℃ to 550℃. For the thinner NiSi, the sheet resistance becomes high and narrows the process window. Next, we tested the thermal stability of Ni silicide by using the 2nd RTA and longer-time furnace annealing at 600℃. Ni silicide on a-Si owns the best stability which remains almost the same sheet resistance for longer time annealing. But for NiSi on c-Si, Ni will continuous diffuse and cause the sheet resistance to increase. Compared to the columnar poly silicon (poly-Si), the non-columnar poly silicon (a-poly Si) is more stable in the same thermal treatment.
Then we used the optimum condition to fabricate the nickel silicide n+/p ultra-shallow junction diodes. We found that the leakage current decrease with the increasing silicide formation temperature. This is due to the complete formation of nickel silicide. We also found that the leakage current increase with the increasing of nickel thickness. This phenomenon results from the approach of nickel silicide to junction depletion region. The contact-hole numbers have also been checked for investigation. It shows that the more the contact-hole numbers, the larger the leakage current.
Finally, we have developed a novel S-LPD process for contact-hole formation. This technology was performed under a non-plasma environment. Compared to conventional RIE process, the S-LPD process shows uniform and low leakage current distribution. According to the results, we believe the S-LPD process will be the promising technology for future advanced device fabrication.

Contents
Abstract (Chinese)
Abstract (English)
Acknowledgment (Chinese)
Contents
Table Captions
Figure Captions
Chapter 1 Introduction
1.1 Background and Motivation
1.2 Organization of This Thesis
Chapter 2 Fabrication of Nickel Silicide
2.1 Introduction
2.2 Experiments
2.2.1 RTA Temperature Effects of NiSi on Different Substrates
2.2.2 Linewidth Effects of NiSi Sheet Resistance
2.3 Results and Discussion
2.3.1 Nickel Silicide Formed on Crystal Silicon
2.3.2 Nickel Silicide Formed on Poly-Silicon, a-Silicon, and
a-Poly Silicon
2.3.3 Surface Morphology of Ni Silicide
2.3.4 Linewidth Effects of NiSi Sheet Resistance
2.3.5 Thermal Stability of NiSi
2.4 Summary
Chapter 3 RIE Damage-Free S-LPD Process
3.1 Introduction
3.2 Experiments
3.2.1 I-V Measurement of n+/p Ultra-Shallow Junction with
Silicide
3.2.2 Contact Hole Process Using S-LPD, RIE and Wet Etching
Technology
3.3 Results and Discussion
3.3.1 I-V Characteristics of n+/p Ultra-Shallow Junction with
Nickel Silicide
3.3.2 Liquid-Phase Deposition and Its Selectivity
3.3.3 The Effects of LPD Solution and RIE Plasma to Nickel
Silicide
3.3.4 Electrical Characteristics of S-LPD and RIE Contact
Holes Process
3.4 Summary
Chapter 4 Conclusions and Future Work
4.1 Conclusions
4.2 Future Work
Reference
Vita
Publication Lists

[1] O. O. Awadelkarim, P. I. Mikulan, T. Gu, R. A. Ditizio, and S. J. Fonash, “Hydrogen permeation, Si defect generation, and their interaction during CHF3/O2 contact etching,” IEEE Electron Device Lett., vol. 15, p. 85, 1994.
[2] O. O. Awadelkarim, T. Gu, R. A. Ditizio, P. I. Mikulan, S. J. Fonash, J. F. Rembetski, and Y. D. Chan, “Electrical characteristics of the Si substrate in magnetically enhanced or conventional reactive-ion-etch exposed SiO2/p-Si structure,” IEEE Electron Device Lett., vol. 14, p. 167, 1993.
[3] R. G. Frieser, F. J. Montillo, N. B. Zingerman, W. K. Chu, and S. R. Mader, “Silicon damage caused by hydrogen containing plasma,” J. Electrochem. Soc., vol. 130, p. 2237, 1983.
[4] M. Ephrath and R. S. Bennett, “RIE contamination of etched silicon surface,” J. Electrochem. Soc., vol. 129, p. 1822, 1982.
[5] C. F. Yeh, C. H. Liu, and J. L. Su, “Novel Contact Hole Fabrication Using Selective Liquid-Phase Deposition Instead of Reactive Ion Etching,” IEEE Electron Device Lett., vol. 20, p. 39-41, 1999.
[6] C. F. Yeh, C. H. Liu, and J. L. Su, “Application of Selective Liquid-Phase Deposition to Fabricate Contact Holes without Plasma Damage,” Journal of The Electrochemical Soc. vol. 146, no.6, p. 2294-2299, June 1999.
[7] Toyota Morimoto, Tatsuya Ohguro, Hisayo Sasaki Momose, Toshihiko Iinuma, Iwao Kunishima, Kyoichi Suguro, Ichiro Katakabe, Hiroomi Nakajima, Masakatsu Tsuchiaki, Mizuki Ono, Yasuhiro Katsumata, and Hiroshi Iwai, “Self-Aligned Nickel-Mono-Silicide Technology for High-Speed Deep Submicrometer Logic CMOS ULSI”, IEEE Transactions on electron devices, vol. 42, No. 5, p. 915-922, May 1995.
[8] R. Mukai, S. Ozawa, H. Yagi, “Compatibility of NiSi in the self-aligned silicide process for deep submicrometer devices”, The Solid Films 270, p. 567-572, 1955.
[9] M. C. Poon, F. Deng, M. Chan, W. Y. Chan, S. S. Lau, “Resistivity and thermal stability of nickel mono-silicide,” Applied Surface Science 157, pp. 29-34, 2000.
[10] D. —X. Xu, S. R. Das, C. J. Peters, L. E. Erickson, “ Materials aspects of nickel Silicide for ULSI applications,” The Solid Films 326, p. 143-150, 1998.
[11] Stephen C. H. Ho, M. C. Poon, Mansum Chan, and H. Wong, “Thermal Stability of Nickel Silicides in Different Silicon Substrates,” IEEE, p. 105-108, Jun. 1998.
[12] B. A. Julies, D. Knoesen, R. Pretorius, and D. Adams, “A study of the NiSi to NiSi2 transition in the Ni-Si binary system,” The Solid Films 347, p. 201-207, 1999.
[13] L. M. Ephrath, “REACTIVE ION ETCHING FOR VLSI,” IEDM, p.402- 404, 1980.
[14] Kouichi Tani, Tetsuo Yamaji and Satoshi Nishikawa, “Effect of Contact-Hole-Etching Damage on Aluminum Chemical Vapor Deposition,” Jpn. J. Appl. Phys., Vol. 31 (1992), pp.4407-4410, Part 1, No. 12B, December 1992.
[15] Kow-Ming Chang, Ta-Hsun Yeh, Shih-Wei Wang, and Chii-Horng Li, “Influence of damage and contamination from reactive ion etching on selective tungsten deposition in a low-pressure chemical-vapor-deposition,” J. Appl. Phys., Vol. 80, No. 5, p.3056-3061, 1 September 1996.
[16] Kazuo Hashimi, Daisuke Matsunaga, Masao Kanazawa, Masayuki Tomoyasu, Akira Koshiishi and Masahiro Ogasawara, “Influence of Gas Chemistry and Ion Energy on Contact Resistance,” Jpn. J. Appl. Phys., Vol. 35(1996), pp. 2494-2500, Part 1, No. 4B, April 1996.
[17] C. F. Yeh and C. L. Chen, “Controlling fluorine concentration and thermal annealing effect on liquid-phase deposited SiO2-xFx Films”, J. Electrochem. Soc., vol.142, no.10, p.3579, 1995.
[18] C. F. Yeh and C. L. Chen, “Room-temperature selective growth of dielectric film by liquid-phase deposition,” Semicon. Sci. Technol., vol.9, p.1250, 1994.
[19] C. F. Yeh, Y. C. Lee, and J. L. Su “Selective SiO2-xFx growth with liquid-phase deposition for MEMS technology” in Proc. SPIE - Int. Soc. Opt. Eng., vol.2879, pp.260-265, 1996.
[20] C. F. Yeh, and C. H. Liu, “Applying Selective Liquid-Phase Deposition to Create Contact Holes in Plasma Damage-Free Process”, in Proc. on Plasma Process Induced Damage (98’P2ID), p.223, 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top