跳到主要內容

臺灣博碩士論文加值系統

(75.101.211.110) 您好!臺灣時間:2022/01/26 14:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡秋寶
研究生(外文):Chiu-Pao Tsai
論文名稱:堆疊式閘極介電層結構之低溫多晶矽薄膜電晶體特性之研究
論文名稱(外文):Characteristics of Low-Temperature Polysilicon Thin-Film Transistors with a Novel Stack Gate Dielectric Structure
指導教授:張國明
指導教授(外文):Kow-Ming Chang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
中文關鍵詞:薄膜電晶體堆疊式閘極介電層電漿輔助化學氣相沈積笑氣
外文關鍵詞:Thin-Film TransistorsStack Gate DielectricPECVDN2O
相關次數:
  • 被引用被引用:0
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:1
在本論文中,我們提出堆疊式閘極介電層結構之低溫多晶矽薄膜電晶體,以電漿輔助化學氣相沈積系統兩段式製程步驟連續成長此堆疊氧化層。此堆疊式閘極介電層是由N2O電漿氧化層與TEOS氧化層所堆疊組成,具有極佳的電特性,比傳統低溫多晶矽氧化層有更高的崩潰電場 ( > 8.5 MV/cm)。我們更進一步將此堆疊式氧化層應用於低溫多晶矽薄膜電晶體上,大幅的提升TFT元件電特性及可靠度,比起傳統的薄膜電晶體有更低的臨界電壓(下降4伏)、更低的次臨界搖擺(改善1 V/dec)、更高的開關電流比 (> 3.5x106),在場效移動率方面更大幅改善五倍之多。TFT元件電特性之所以有如此明顯的改善,乃是N2O電漿成長的高品質超薄氧化層與多晶矽形成平坦並有極強Si≡N鍵結的介面,並且成長過程中的N2O電漿鈍化機制(passivation)引致大量的氮原子與氧原子修補多晶矽的缺陷所造成的改善。
最後,為了更進一步改善元件特性,我們提出不同方式的鈍化技術處理來降低缺陷密度和改善TEOS氧化層的品質,其中我們所使用的技術為PECVD氨氣(NH3)電漿處理、笑氣(N2O)電漿處理以及在400℃使用爐管通入氧氣或笑氣試圖緻密化與改善氧化層品質。研究發現經過氨氣電漿處理之元件有最佳的電性,乃是由於氫原子的鈍化效果填補多晶矽中的缺陷並降低缺陷態位(defect states),在介面上氮原子的堆積形成強化的Si≡N鍵結等原因所造成的電性改善。

The low temperature polysilicon thin-film transistors (TFTs) have been used in a wide variety of applications in active matrix liquid crystal displays (AMLCDs). Thus, conventional high-temperature thermal oxidation was not suitable for them due to glass substrates. Therefore, the low temperature process of high quality gate dielectric film is necessary for TFTs device fabrication. In this thesis, low-temperature poly-Si TFTs with a novel stack dielectric structure in-situ grown by plasma-enhanced chemical vapor deposition (PECVD) system were presented. The novel stack dielectric is composed of N2O-plasma grown oxide and TEOS oxide has superior electrical properties. The stack oxide grown on poly-Si films shows higher breakdown fields (8.4 MV/cm) than traditional TEOS oxide. The fabricated poly-Si TFTs with a novel stack oxide show high performance characteristics, including smaller threshold voltage, smaller subthreshold swing, higher on/off current ratio (> 3.5x106), especially in the field effective mobility increased more than five times, and also remarkable reliability. These improvements were attributed to the high quality N2O-plasma grown oxide forming smoother surface and strong Si≡N bonds in the oxide/polysilicon interface. In the other hands, N2O-plasma passivation effect induces large amount of nitrogen and oxygen atoms passivated the traps in the polysilicon grain boundaries.
Finally, we further proposed different kinds of passivation methods for achieving higher quality gate oxide and reducing polysilicon trap density for promoting the electrical properties of poly-Si TFTs. These methods include NH3-plasma passivation, N2O-plasma passivation, and annealed in O2 or N2O furnace ambient. It was found that proposed poly-Si TFTs after NH3-plasma directly passivated on stack oxide exhibited significantly superior devices characteristics to others due to the hydrogen passivation of defects and traps, and the nitrogen pile-up at the SiO2/poly-Si interface and the strong Si≡N bonds formation to passivate the dangling bonds at the grain boundaries in the polysilicon.

Contents
Abstract (in Chinese) ........................................i
Abstract (in English) ......................................iii
Acknowledgments (in Chinese)..................................v
Contents.....................................................vi
Table Captions.............................................viii
Figure Captions..............................................ix
Chapter 1 Introduction
1.1 Overview of Polycrystalline Silicon Thin-Film Transistors Technology....................................................1
1.2 Low Temperature Plasma Grown Gate Oxide...................2
1.3 Defects Passivation Mechanisms and Techniques.............3
1.4 The Reliability of Low Temperature Poly-Si TFTs...........3
1.5 Motivation................................................4
1.6 Thesis Outline............................................5
1.7 References 5
Chapter 2 Experimental of Low-Temperature Poly-Si TFTs with a Novel Stack Gate Dielectric Structure
2.1 The Fabrication Process of Low-temperature Poly-Si TFTs..10
2.2 Methods of Device Parameter Extraction...................12
2.2.1 Determination of subthreshold swing..................12
2.2.2 Determination of on/off current ratio................12
2.2.3 Determination of field effect mobility (μFE).........13
2.2.4 Determination of threshold voltage (VT)..............13
2.2.5 Extraction of grain boundary trap state density (Nt).14
2.3 References...............................................15
Chapter 3 The Characteristics of Low-Temperature Poly-Si TFTs with a Novel Stack Gate Oxide
3.1 The Properties of N2O Plasma Grown Oxide.................17
3.2 Characteristics of LT-Poly-Si TFTs.......................18
3.3 Reliability of LT-poly-Si TFTs...........................22
3.4 Summary..................................................22
3.5 References...............................................23
Chapter 4 The Characteristics of Low-Temperature Poly-Si TFTs with Different Plasma Passivations on Novel Stack Oxide
4.1 Introduction.............................................25
4.2 LT Poly-Si TFTs with Different Plasma Passivations on Novel Stack Oxide Fabrication Process........................25
4.3 Electrical Properties of LT Poly-Si TFTs with Different Plasma Passivations..........................................26
4.4 Summary..................................................28
4.5 References...............................................28
Chapter 5 Conclusions and Future Works
5.1 Conclusions..............................................30
5.2 Future Works.............................................31

References
[1] C. H. Fa and T. T. Jew, “The polysilicon insulated-gate field-effect transistors,” IEEE Trans. Electron Devices, vol. 13, no. 2, p. 290, 1996.
[2] T. I. Kamins, “Hall mobility in chemically deposited polycrystalline silicon”, J. Appl. Phys., Vol. 42, pp. 4357-4365, 1971.
[3] J. Y. W. Seto, ”The electrical properties of polycrystalline silicon films”, J. Appl. Phys., Vol. 46, pp. 5247-5264, 1975.
[4] J. Levinson et al., “Conductivity behavior in polycrystalline semiconductor thin film transistors”, J. Appl. Phys., Vol. 53, p. 1193, 1982.
[5] S. Morozumi et al., SID Digest, p. 156, 1983.
[6] T. Serilawa, S.shirai, A. Okamoto, and S. Suyama, “Low-temperature fabrication of high-mobility Poly-Si TFTs for large-area LCD’s”, IEEE Trans. Electron Dev., vol. 36, no. 9, pp. 1929,1989.
[7] S. Ikeda et al., “A polysilicon transistor technology for large capacity SRAMs”, IEDM Tech. Dig., pp.469, 1990.
[8] H. C. Lin et al., “ Deposition and Device application of in situ Boron doped Polycrystalline SiGe Films Grown at Low Temperature”, J. Appl. Phys. Lett., vol. 42, no. 9, pp. 835-837, 1993.
[9] S. Morozumi et al., “Completely integrated contact-type linear image sensor”, IEEE Trans. Electron Dev., vol. 21, no. 8, p. 1546, 1985.
[10] Y. Hayashi et al., “A thermal printer head with CMOS thin-film transistors and heating elements integrated on a chip”, ISSCC Digest, pp. 266, 1988.
[11] N. Yamauchi et al., “An integrated photodector amplifier using a-Si p-I-n photodiodes and poly-Si thin-film transistors”, IEEE photonic Tech. Lett., vol. 5, no. 3, p. 319, 1993.
[12] N. A. Haroun, “Grain size statistics”, J. Materials Science, 16, 2257-2262, August 1981.
[13] H. C. Tuan, “Amorphous silicon thin film and its applications to large-area elements”, Mater. Rec. Soc. Ymp. Proc., vol. 33, p247, 1984.
[14] J. R, Ayres and N. D, Young, “Hot carrier effects in devices and circuits formed from poly-Si”, IEEE proc. Circuits Devices Syst., vol. 141, no. 1, p.38, 1994.
[15] C. A. Dimitriadis et al., “Performance of Thin-Film Transistors in Polysilicon Films Grown by Low-Pressure Chemical Vapor Deposition at Various Pressure”, IEEE Trans. Electron Devices, vol. ED-39, p. 598, 1992.
[16] A. Kohno, T. Sameshima, “high performance poly-Si TFTs fabricated using pulsed laser annealing and remote plasma CVD with low temperature processing,” IEEE Trans. Electron Devices, vol. 42, pp. 251-257, 1995.
[17] Seek-Woon Lee, Seung-Ki Joo, “Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization”, IEEE Electron Device Letters, Vol. 17, p. 407 -409, Aug. 1996.
[18] M. Bonnel et al., “Poly-Si thin film transistors fabricated with rapid thermal annealed silicon film”, Jpn. J. Appl. Phys., vol. 30, no. 11B, pp. L1924, 1991.
[19] T. W. Little, K. Takahara, “Low temperature poly-Si TFTs using solid phase crystallization of very thin films and an electron cyclotron resonance chemical vapor deposition gate insulator,” Jpn. J. Appl. Phys. vol. 30, no. 12B, pp. 3724-3728, 1991.
[20] Y. Nishi, T. Funai, “ Characteristics of PECVD tetraethylorthosilicate oxide and thin-film transistor application,” Jpn. J. Appl. Phys., vol. 31, no.12B, p. 4570, 1992.
[21] C. K. Yang et al., “Enhanced H2 plasma effects on polysilicon thin-film transistors with thin ONO gate-dielectrics”, IEEE Electron Device Lett., vol. 16, P. 228 , 1995.
[22] C. F. Yeh et al., “Novel technique for SiO2 formed by liquid-phase deposition for low-temperature processed polysilicon TFTs”, IEEE Electron Device Lett., vol. 14, p403-405, 1993.
[23] L. S. Wang et al., “Improvement of oxide quality by rapid thermal annealing in N2”, Mat. Res. Soc. Symp. Proc., vol. 224, pp. 425, 1991.
[24] G. Wawachi et al., “Large-area ion doping technique with bucket-type ion source for polycrystalline silicon films”, J. Electrochem. Soc., vol. 137, no. 11, p. 3522, 1990.
[25] L. Pichon, F. Raoult, ”Low temperature(≦600℃) polysilicon thin-film transistor having in-situ doped polysilicon source and drain contacts,” IEEE Electron Device Lett., vol. 16, no. 9, pp. 376-378, 1995.
[26] J. D. Bernstein, S. Qin, C. Chan, “Hydrogenation of polycrystalline silicon thin-film transistors by plasma ion implantation,” IEEE Electron Device Lett. Vol. 16, no. 10, pp.421-423, 1995.
[27] Y. S. Kim et al., “Different hydrogen passivation mechanisms between low-temperature and high-temperature poly-Si TFTs”, Jpn. J. Appl. Phys., vol. 34m no. 2B, pp. 719, 1995.
[28] F. S. Wang et al., “The effect of NH3 plasma passivation on polysilicon thin-film transistors”, IEEE Electron Device Lett., vol. 16, no. 11, pp.503, 1995.
[29] S. Seki et al., “Leakage current characteristics of offset-gate-structure polycrystalline-silicon MOSFET’s”, IEEE Electron Device Lett., vol. ED-33, no. 10, pp. 1518, 1986.
[30] S. Morozumi et al., SID Digest, p.156, 1983.
[31] I. W. Wu, T. Y. Huang, W. B. Jackson, A.G. Lewis, and A. Chiang, “Passivation kinetics of two types of defects in polysilicon TFT by plasma hydrogenation”, IEEE Electron Device Lett., vol. 12, no.4, p.181, 1991.
[32] I. W. Wu, T. Y. Huang, W. B. Jackson, A.G. Lewis, and A. Chiang, “Passivation kinetics of two types of defects in polysilicon TFT by plasma hydrogenation”, IEEE Electron Device Lett., vol. 12, no.4, p.181, 1991.
[33] T. I. Kamins, and P. J. Marcoux, “Hydrogenation of transistors fabricated in polycrystalline-silicon films”, IEEE Electron Device Lett., vol. 1, no. 8, p.159, 1980.
[34] R. A. Ditizio, S. J. Fonash, and B. C. Hseih, “Examination of the optimization of thin film transistor passivation with hydrogen electron cyclotron resonance plasma”, J. Vac. Sci. Technol. A, vol. 10, no. 1, p 59, 1992.
[35] M. Hack, A. G. Lewis, and I. W. Wu, “physical models for degradation effects in polysilicon thin-film transistors”, IEEE Trans. Electron Devices, vol. 40, no. 5, p. 890, 1993.
[36] F. S. Wang, M. J. Tsai, and H. C. Cheng, “The effects of NH3 plasma passivation on polysilicon thin-film transistors,” IEEE Electron Device Lett., vol. 16, p. 503, 1995.
[37] J. W. Lee, N. I. Lee, S. H. Hur, and C. H. Han, “Oxidation of silicon using electron cyclotron resonance nitrous oxide plasma and its application to polycrystalline silicon thin film transistors,” J. Electrochem. Soc. Vol. 144, p. 3238, 1997.
[38] C. C. Chen, H. C. Lin, C. Y. Chang, M. S. Liang, C. H. Chjen, S. K. Hsien, and T. Y. Huang, “ Plasma-induced charging damage in ultrathin (3 nm) nitrided oxides,” IEEE Electron Device Letters, vol. 21, p. 15-17, Jan. 2000.
References
[1] Dieter K. Schroder, “Semiconductor Material and Device Characterization,” Wiley-INTERSCIENCE, 1998.
[2] J. Levinson, G. Este, M/ Rider, P. J. Scanlon, F. R. Shepherd, and W. D. Westwood, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys., vol. 53, no. 2, p. 193, 1982.
[3] J. Y. W. Seto, “The electrical properties of polycrystalline silicon films,” J. Appl. Phys., vol. 46, no. 12, p. 5247, 1975.
[4] R. E. Proano et al., “Development and electrical properties of undoped polycrystalline silicon thin film transistors,” IEEE Trans. Electron Devices, vol. 36, no. 9, p.1915, 1989.
References
[1] J. C. Lee and C. Hu, “Polarity asymmetry of oxides grown on poly-crystalline silicon,” IEEE Trans. Electron Devices, vol. 35, p. 1603, 1988.
[2] K. Takechi, H. Uchida, and S. Kaneko, “Mobility improvement mechanism in a-Si:H/SiNx interface, ” in Proc. Mat. Res. Soc. Symp., 1992, vol. 258, p. 955.
[3] J. Y. Lee, C. H. Han, and C. K. Kim, “ECR plasma oxidation effects on performance and stability of polysilicon thin-film transistors,” in IEDM Tech. Dig., 1994, p. 523.
[4] J.W. Lee et al., “Oxidation of silicon using electron cyclotron resonance nitrous oxide plasma and its application to polycrystalline silicon thin film transistors,” J. Electrochem. Soc. vol. 144, p. 3238, 1997.
[5] L. K. Bera et al., “Electrical properties of N2O/NH3 plasma grown oxynitride on strained-Si,” IEEE electron device Lett., vol. 19, no. 8, 1998.
[6] M. Bhat et al., “Effects of NH3 nitridation on oxides grown in pure N2O ambient,” Appl. Phys. Lett., vol. 64, p. 2116, 1994.
[7] C. K. Yang et al., “Improved electrical characteristics of thin-film transistors fabricated on nitrogen-implanted polysilicon films,” IEDM Tech. Dig., p. 505, 1994.
[8] S. Fang et al., “A model and experiments for thin oxide damage from plasma induced wafer charing in magnetron plasma,”, IEEE Electron device Lett., vol. 13, pp. 347-349, 1992.
[9] Sychyi Fang et al., “Oxide damage from plasma charging: breakdown mechanism and oxide quality,” IEEE Trans. Electron Devices, vol. 41, no. 6, 1994.
[10] J. C. lee et al., “Polarity asymmetry of oxides grown on poly-crystalline silicon,” IEEE Trans. Electron Devices, vol. 35, p. 1603, 1998.
[11] J. W. Lee, N. I. Lee, S. H. Hur, and C. H. Han, “Oxidation of silicon using electron cyclotron resonance nitrous oxide plasma and its application to polycrystalline silicon thin film transistors,” J. Electrochem. Soc. Vol. 144, p. 3238, 1997.
[12] C. C. Chen, H. C. Lin, C. Y. Chang, M. S. Liang, C. H. Chjen, S. K. Hsien, and T. Y. Huang, “ Plasma-induced charging damage in ultrathin (3 nm) nitrided oxides,” IEEE Electron Device Letters, vol. 21, p. 15-17, Jan. 2000.
[13] M. Hack et al., “Physical models for degradation effects in polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 40, p. 890, 1993.
[14] J. Y. Lee et al., “ECR plasma oxidation effects on performance and stability of polysilicon thin film transistors,” IEDM Tech. Dig., p. 523, 1994.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top