跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/22 06:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李東昇
研究生(外文):Lee Tung-Sheng
論文名稱:鐵電記憶元件的低溫製程及電流遲滯研究
論文名稱(外文):Low temperature processing of Metal/Ferroelectrics/Insulator/Si structures and their hysteresis loops of conduct current
指導教授:曾俊元
指導教授(外文):Tseng Tseung-Yuen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:70
中文關鍵詞:鐵電記憶元件電流遲滯鉭酸鍶鉍低溫
外文關鍵詞:MFIScurrent hysteresisSBTmemory windowlow temperatureMOD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:313
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鉭酸鍶鉍具有不疲勞的特性,對於用在非破壞性讀取的鐵電記憶電晶體有相當的好處,但是就其本身的低殘存極化量和較高的製程溫度,則限制了其做為鐵電記憶體的應用。在本篇研究,欲以添加不同高居里溫度的物質來增進殘存極化量及達成降低製程溫度的目的,並藉由金屬有機溶液沈積法沈積該鐵電薄膜,使鐵電記憶元件的製程溫度有效降低至600℃。而且,透過電容和電壓及電流和電壓的量測法,可明顯地看出此方法不僅實現了鐵電記憶元件的低溫製程,同時又保有數十奈米等級的低電流密度和在來回5伏特應用電壓下仍有1.3伏特的記憶體效應的特性。而在另一方面,此種鐵電記憶元件具有電流遲滯效應的現象,原因為極化向量所導致,當然這樣的現象和極化向量對電場及電容對電壓的量測是對等的。除此之外,對於實際操作鐵電記憶電晶體,閘極所面臨的不同漏電流的問題在此篇都將探討。

SrBi2Ta2O9 (SBT) ferroelectric films have been demonstrated to possess the fatigue-free property to apply in the non-destructive MFISFET,but suffer from the issue of the low remanent polarization and high crystallization temperature。In this thesis,the stoichiometric SBT films prepared by using the metal-organic solution deposition (MOD) method was doped with the Bi3TiTaO3 (BTT) and Bi3TiNbO3 (BTN) for promoting the remanent polarization and achieving the goal of decreasing the process temperature below to 600℃。Moreover,the C-V measurement also reveals the broader memory widows of 1.3V as the sweep voltage in the 5V,and the leakage current density is as low as1E-8 A/ 。On the other hand,the hysteresis loop of conducting current in the MFIS structure also reveals the effect of the polarization behavior of ferroelectric film 。Furthermore,the effect of leakage current on the operation of the MFIS structure is discussed。

Content
ABSTRACT (CHINESE)…………………………………………………….…i
ABSTRACT (ENGLISH)…………………………………………………………ii
ACKNOWLEDGEMENTS.………………………………………………...iii
CONTENT………………………………………………………………..iv
FIGURE CAPTIONS.…………………………………..………………………vi
TABLE LIST…………..…………………………..……………………....xi
CHAPTER 1 Introduction………………...1
1-1 General Background…………………………...………………1
1-2 Characteristics of ferroelectrics and conductive mechanisms.……………..….2
1-2.1 Ferroelectricity…………………………..………….……2
1-2.1.1 Ferroelectric hysteresis loop ………………..…….3
1-2.1.2 Permittivity of the ferroelectrics………..…...….4
1-2.1.3 Depolarizaion field in ferroelectrics….………….5
1-2.2 Conductive mechanisms..…………...….….…..….……6
1-2.2.1 Schottky Emission……………………….…………..………6
1-2.2.2 Frenkel—Poole Emission………………….….…….….…..7
1-2.2.3 Space—charge limited conduction………….…..…...8
1-2.2.4 Ionic current……………….………….………..……..…..8
1-3 Motivation and literature survey…..…….……..……9
1-4 Organization of the thesis……..….…..…….10
CHAPTER 2 Experimental details.………………….……..…..……12
2-1 MFIS structure…….………………….………….........12
2-2 Preparation of Insulator of STO…..….…....……...12
2-3 Preparation of SBT films………..………...………..12
2-4 Physical Characterization Techniques…….……..14
2-4.1 Ellipsometry……….….…….….….14
2-4.2 n&k analyzer………….….…...……....14
2-4.3 X-Ray Diffraction Analysis (XRD)……………..…..14
2-4.4 Scanning Electron Microscopy(SEM)…………….….14
2-5 Electrical Characterization Techniques....….…..15
2-5.1 Current-voltage (I-V) measurements……………….….15
2-5.2 Capacitance-voltage (C-V) measurements…..…..….15
2-5.3 Pulse Meausrements………….……….…….15
CHAPTER 3 Results and discussion…………………….…………16
3-1 Effect of STO films thickness of MFIS structure…..………..………….…….16
3-2 Properties of SBTT films……..……..…………..…17
3-3 Properties of SBTN and SBTT films…….……....…18
3-4 Effect of annealing temperatures and times on properties of ferroelectric films……………..……..….…...20
3-5 Diverse C-V measurements of ferroelectric films ….………………..………21
CHAPTER 4 Current transport……………..…..….…..……..…...23
4-1 Hysteresis loop of conduct current…………...…23
4-2 Resistance modulation……………….……….….27
4-3 Movement of trapped carrier……....……....…..28
CHAPTER 5 Conclusions and suggestions……………….……...….…31
Appendix A………………………………………….………….…….….31
Reference.……………….………………..….………………………33

[1] J. Valasek, Phys.Rev. Vol.15, 537 (1920).
J. Valasek,“ Piezo-Electric and Allied Phenomena in Rochelle Salt ”Phys.Rev. Vol.17, 475 (1921).
[2]. L. D. Landau,Phys. Z. Sowjetunion Vol.11,26 (1937).
[3]. L. D. Landau,Phys. Z. Sowjetunion Vol.11,545 (1937).
[4]. A. F. Devonshire,Philos. Mag. Vol.40,1040 (1949).
[5]. Y. Xu, Ferroelectric Materials and Their Applications (North-Holland, New York,1991).
[6]. S. Y. Wu, “ A New Ferroelectric Memory Device, Metal- Ferroelectric- Semiconductor Transistor ”,IEEE Trans. Electron Devices Vol. ED-21, 499 (1973).
[7]. M. Okuyama , M. Takahashi , H. Sugiyama,T. Nakaiso,K. Kodama,M. Noda ,“ An analysis of effects of device structres on retention characteristics in MFIS structures ”, Applications of Ferroelectrics, 2000. ISAF 2000. Proceedings of the 2000 12th IEEE International Symposium on , Vol. 1 (2001).
M. Takahashi,H. Sugiyama,T. Nakaiso,K. Kodama,M. Noda and M. Okuyama, “ Analysis and improvement of Retention time of memorized state of metal- ferro- electric -insulator-semiconductor structure for ferroelectric gate FET memory ”,Jpn. J. Appl. Phys. Vol. 40,pp. 2923 (2001).
[8]. T. A. Rost, H. Lin, and T. A. Rabson, “ Ferroelectric switching of a field-effect transistor with a lithium niobate gate insulator ”Appl. Phys. Lett. 59, 3654 (1991).
[9]. C. A. Paz de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and J. F. Scott,“ Fatigue-free ferroelectric capacitors with platinum electrodes ”, Nature Vol. 374 ,13 (1995)
[10]. K. Uchino, Ferroelectric Devices (Marcel Dekker, New York,2000).
[11]. T. Mitsui, I. Tatsuzaki and E. Nakamura, An Introduction to the Physics of Ferro- electrics ( Gordon and Breash, London,1976).
[12]. D. K. Cheng, Field and Wave Electrinmagnetics (Addison-Wesley, New York,1989).
[13]. S. M. Yoon, E. Tokumitsu, H. Ishiwara, “ Adaptive-learning neuron integrated circuits using metal-ferroelectric (SrBi2Ta2O9)-semiconductor (MFS) FET's ”, IEEE Electron Device Letters,Vol.20,526 (1999).
[14]. S. M. Sze, Physics of Semiconductor Devices (Wiley,New York,1974).
[15]. C. D. Gutleben, “ Band alignments of the platinms/SrBi2Ta2O9 interface ”, Appl. Phys. Lett. Vol.71,3444 (1997).
[16]. J. Robertson, and C.W. Chen, “ Schotty barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalite ”, Appl. Phys. Lett. Vol.74, 1168 (1999).
[17]. Y. Watanabe, “ Electrical transport through Pb(Zr,Ti)O3 p-n and p-p heterostructures modulated by charges at a ferroelectric surface : Ferroelectric p-n diode ”, Phys. Rev. B,Vol.59,11257 (1998).
[18]. H. Irie, M. Miyayama, and T. Kudo, Key Eng. Mater. 27, 181 (2000).
[19]. M. Mitsuya, N. Nukaga, T. Watanabe, and H. Funakubo, “ Low leakage current and good ferroelectric properties of SrBi2(Ta0.7Nb0.3)2O9—Bi3TiTaO9 solid solution thin film “, Appl. Phys. Lett. Vol.79,2067 (2001).
[20]. J. S. Zhu, H. X. Qin, Z. H. Bao, Y. N. Wang, W. Y. Cai, P. P. Chen, and W. Lu, H. L. W. Chan and C. L. Choy , “ X-ray diffraction and Raman scattering study of SrBi2Ta2O9 ceramics and thin films with Bi3TiNbO9 addition ”, Appl. Phys. Lett. Vol.79,3827 (2001).
[21]. M. S. Tasi and T. Y. Tseng, “ The effect of oxygen to argon ratio on the electrical and reliability characteristics of sputtered Sr0.8Bi2.5Ta1.2B0.9O9+x thin films ”,Thin Solid Films, pp. 190 (2000).
[22]. P. Blom, R. Wolf, J. Cillenssen, and M. Krijn, “ Ferroelectric Schottky diode “, Phys. Rev. Lett. Vol.73,2107 (1994).
[23]. Y. Watanabe, “ Reproducible memory effect in the leakage current of epitaxial ferro- electric/conductive perovskite heterostrustures ”, Appl. Phys. Lett. Vol.66,28 (1995).
[24]. S. B. Desu, P. C. Joshi, X. Zhang, and S. O. Ryu,“ Thin films of layered-structure (1- x) SrBi2Ta2O9 + x Bi3Ti (Ta1- y Nby)O9 solid solution for ferroelectric random access memory devices ”, Appl. Phys. Lett. Vol.71,1041 (1997).
S. O. Ryu, P. C. Joshi, S. B. Desu,“ Low temperature processed 0.7SrBi2Ta2O9 — 0.3Bi3TaTiO9 thin films fabricated on multilayer electrode-barrier structure for high-density ferroelectric memories ”, Appl. Phys. Lett. Vol.75,2126 (1999)
[25]. Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano, F. Izumi,“ Crystal structures and ferroelectric properties of SrBi2Ta2O9 and Sr0.8Bi2.2Ta2O9 ”, Appl. Phys. Lett. Vol.74,1904 (1999).
[26]. W. P. Li, R. Zhang, J. Shen, Y. M. Liu, B. Shen, P. Chen, Y. G. Zhou, J. Li,X. L. Yuan, Z. Z. Chen, Y. Shi, Z. G. Liu, and Y. D. Zheng,“ Evidence for ferroelectric border traps near the SrBi2Ta2O9 /Si interface through capacitance—voltage measurement ”, Appl. Phys. Lett. Vol.77,564 (2000).
[27]. B. A. Volkov, S. V. Zhokhovets, and G. A. Chokparova,“ Barrier capacitance of a p-n junction in the region of a strong ferroelectric instability ”, Sov. Phys. Semicond. 12,501 (1978).
[28]. V. B. Sandomirskii, Sh. S. Khalilov, and E. V. Chenskii,“ Properties of a p-n junction if a ferroelectric semiconductor ”, Sov. Phys. Semicond. 16,279 (1982).
[29]. Y. Watanabe, “ Theoretical stability of the polarization in a thin semiconducting ferroelectric ”, Phys. Rev. B, Vol.57,789 (1998).
[30]. Y. Watanabe,“ Tunneling current through a possible all-perovskite oxide p-n junction ”, Phys. Rev. B, Vol.57,5563 (1998).
[31]. K. Gotoh, H. Tamura, H. Takeuchi, and A. Yoshida, “ Pt/PZT/n-SrTiO3 ferroelectric memory diode ” Jpn. J. Appl. Phys., Part 1 35, 39 (1996).
[32]. Y. Jun, D. Xiaoming, Z. Wenli, W. Yunbo, Z. Yuankai, W. Hua, L.u Gang, X. Jifan, G. Junxiong“ Study on the I—V characteristics of ferroelectric thin film systems with the structure of MFSM ”, Materials Science and Engineering B Vol.76,22 (2000)
[33]. H. S. Choi,, E. H. Kim, I. Choi, Y. T. Kim, J. H. Choi, J. Y. Lee,“ The effect of ZrO2 buffer layer on electrical properties in Pt/SrBi2Ta2O9/ZrO2/Si ferroelectric gate oxide structure ”, thin solid films Vol.388,226 (2001).
[34]. R. Moazzami, C. Hu, and W. H. Shepherd, “ Electrical Characteristics of Ferroelectric PZT Thin Film for DRAM Applications ”, IEEE Trans. Electron Devices Vol.39,2044 (1992)
[35]. J. F. Scott, “ Device Physics of Ferroelectric Thin-Film Memories ”, Jpn. J. Appl. Phys. Vol. 38,pp. 2272 (1999).
[36]. R. L. Anderson,“ EXPERIMENTS ON Ge-GaAs HETEROJUNCTIONS ”, Solid- State Electronics Vol.5,341 (1962)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top