跳到主要內容

臺灣博碩士論文加值系統

(3.81.172.77) 您好!臺灣時間:2022/01/21 19:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉仕文
研究生(外文):Si-Wen Liu
論文名稱:利用微機電技術設計與製造微波開關元件
論文名稱(外文):Design and Fabrication of RF Switch Devices by MEMS Technology
指導教授:張國明桂正楣
指導教授(外文):Chang, Kow-MingKwei, Cheng-May
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:55
中文關鍵詞:微機電微波開關
外文關鍵詞:MEMSRF Switch
相關次數:
  • 被引用被引用:1
  • 點閱點閱:616
  • 評分評分:
  • 下載下載:124
  • 收藏至我的研究室書目清單書目收藏:3
本論文將著重在改善微波開關元件,利用微機電技術而能建構在矽晶片上,我們設計了新的製程,成功的實現利用微機電技術以製造出微波開關元件,新的製程對於各層膜間的不平整和浮板在壓力的影響下的翹曲問題都有改善,整個結構都是利用鋁這個材料,且低於攝氏300度,所以,可以做在製程的後段,甚至可以做在化合物半導體上。
我們以相同的製造過程來製造出兩種類型微機電微波開關元件,包含有平行式和連續式以相互比較,電容吸引和獨立支撐臂是平行式和連續式的代表結構,他們在最近的微波開關領域有長足的發展,而且扮演著不同的吃重角色。我們的微波開關元件是做在微帶線上的,但是,經由設計,可以輕易的轉換到其他電路設計上(像是共平面波導式)。
微波開關元件,基本上是用來改變無線電波或是微波信號,但是,他們也可以應用在微波相轉換電路上,還有許多其他種類的應用。且由於他們具有許多的優點又適合更高的頻段,所以,我們可以用來取代傳統的正-本-負(p-i-n)二極體或是場效二極體。
The thesis is focused on the exploration of how to improve the structure of RF switch devices on silicon structure by MEMS technology. A new process was designed to fabricate these MEMS switches. This process improves the sticking effect and stress on membrane. The whole structure was constructed with aluminum under 300oC, and we can fabrication it on back end process, even could fabricate on compound substrate.
We will compare to two types of RF MEMS Switches (parallel and series) in the same process. Capacitive and Cantilever are the stand type for parallel and series types. They have promoted exciting advancements in the field of microwave switching recently and play different role in MMIC. Our structure of RF MEMS Switch is fabricated at microstrip on silicon wafer, but we can easily design to fabricate at different kind of electric circuit design (like CPW).
These switches can be used to change RF or microwave signal basically. But they can also used to RF signal phase shifter circuit and many other kinds of applications. RF MEMS switches will be used to replace traditional p-i-n diode or FET devices by their good characteristics at high frequency.
Table of Contents
Abstract (Chinese)…………………………………………………………Ⅰ
Abstract (English)…………………………………………………………Ⅱ
Acknowledgment (Chinese)...…………………………………………….Ⅲ
Table of Contents....…………………………………………………….Ⅳ
List of Figure....…………………………………………………………Ⅵ
Chapter 1
Introduction
1.1 Current Trend is towards Higher Frequency………………1
1.2 Road of Miniaturization of Transceiver and Receiver…3
1.3 Micromachined Devices for Wireless Communications……5
1.4 MEMS Actuators for Microwave………………………………7
Chapter 2
Principle of MEMS Switch
2.1 Introduction Switch………………………………………………9
2.2 Advantages of MEMS Switch……………………………………11
2.3 Electromechanical Considerations……………………………16
Chapter 3
Circuit design and process procedure
3.1 RF-MEMS Switches for Reconfigurable Integrated Circuits…21
3.1.1 Parallel type switch……………………………………………23
3.1.2 Series type switch………………………………………………25
3.2 Process Sequence………………………………………………26
Chapter 4
Experimental and Discussions
4.1 Experiment of process…………………………………………29
4.1.1 Low-loss microwave on high-resistivity silicon…29
4.1.2 Nitride roughness on the button electrode…………30
4.1.3 Membrane and polymer stress……………………………31
4.2 Membrane formation process and circuit formation process....32
Chapter 5
Conclusions and Future work……………………………………………39
Reference……………………………………………………………………41
Publication List……………………………………………………………45
References
[1] 覃禹華 "行動電話關鍵IC發展趨勢" 新通訊元件雜誌 2001 12月號 第10期
[2] Cass, S. “Large jobs for little devices (microelectromechanical systems) “ IEEE Spectrum , Volume: 38 Issue: 1 , Jan. 2001 Page(s): 72 —73
[3] 邢泰剛 “RF MEMS技術開啟無線通信新架構” 新電子科技雜誌 191期 2002年2月號
[4] Nguyen, C.T.-C.; Katehi, L.P.B.; Rebeiz, G.M. “Micromachined devices for wireless communications” Proceedings of the IEEE , Volume: 86 Issue: 8 , Aug. 1998 Page(s): 1756 —1768
[5] Ratazzi, E.P. “Microelectromechanical devices for multimode communication systems” National Aerospace and Electronics Conference, 2000. NAECON 2000. Proceedings of the IEEE 2000 , 2000 Page(s): 346 —353
[6] Lubecke, V.M.; Barber, B.P.; Fetter, L.A. “High-Q MEMS for wireless integrated circuits” Telecommunications in Modern Satellite, Cable and Broadcasting Service, 2001. TELSIKS 2001. 5th International Conference on , Volume: 1 , 2001 Page(s): 203 -209 vol.1
[7] C. T.-C. Nguyen, “High-Q micromechanical oscillators and filters for communications,” in Proc. 1997 IEEE Int. Symp. Circuits and Systems, Hong Kong, June 9—12, 1997, pp. 2825—2828.
[8] --------, “Frequency-selective MEMS for miniaturized communication devices,” in Proc. 1998 IEEE Aerospace Conf., Snow-mass, CO, Mar. 21—28, 1998, pp. 445—460.
[9] K. M. Lakin, G. R. Kline, and K. T. McCarron, “Development of miniature filters for wireless applications,” IEEE Trans. Microwave Theory Tech., vol. 43, pp. 2933—2939, Dec. 1995.
[10] D. J. Young and B. E. Boser, “A micromachined variable capacitor for monolithic low-noise VCO’s,” in Tech. Dig. 1996 Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June 3—6, 1996, pp. 86—89.
[11] J. A. Von Arx and K. Najafi, “On-chip coils with integrated cores for remote inductive powering of integrated microsys-tems,” in Dig. Tech. Papers 1997 Int. Conf. Solid-State Sen-sors and Actuators (Transducers’97), Chicago, IL, June 16—19, 1997, pp. 999—1002.
[12] B. Ziaie, N. K. Kocaman, and K. Najafi, “A generic micro-machined silicon platform for low-power, low-low miniature transceivers,” in Dig. Tech. Papers 1997 Int. Conf. Solid-State Sensors and Actuators (Transducers’97), Chicago, IL, June 16—19, 1997, pp. 257—260.
[13] M. G. Allen, “Micromachined intermediate and high frequency inductors,” in Proc. 1997 IEEE Int. Symp. Circuits and Systems, Hong Kong, June 9—12, 1997, pp. 2829—2832.
[14] C. H. Ahn, Y. J. Kim, and M. G. Allen, “A fully integrated micromachined toroidal inductor with nickel-iron magnetic core (the switched DC/DC boost converter application),” in Dig. Tech. Papers 7th Int. Conf. Solid-State Sensors and Actua-tors (Transducers’93), Yokohama, Japan, June 7—10, 1993, pp. 70—73.
[15] T. M. Weller, L. P. Katehi, and G. M. Rebeiz, “High perfor-mance microshield line components,” IEEE Trans. Microwave Theory Tech., vol. 43, pp. 534—543, Mar. 1995.
[16] P. Blondy, A. R. Brown, D. Cros, and G. M. Rebeiz, “Low-loss micromachined elliptic filters for millimeter wave telecommu-nication systems,” presented at the IEEE International MTT-S Symposium, June 1998.
[17] G. M. Rebeiz, L. P. Katehi, T. M. Weller, C. Y. Chi, and S. V. Robertson, “Micromachined filters for microwave and millimeter-wave applications,” Int. J. Microwave Millimeter-Wave Computer Aided Eng., vol. 7, pp. 149—166, Feb. 1997.
[18] S. V. Robertson, L. P. Katehi, and G. M. Rebeiz, “Microma-chined W-band filters,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 598—606, Apr. 1996.
[19] C. Y. Chi and G. M. Rebeiz, “Conductor-loss limited stripline resonators and filters,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 626—630, Apr. 1996.
[20] T. M. Weller, L. P. Katehi, and G. M. Rebeiz, “A 250 GHz microshield band-pass filter,” IEEE Microwave Guided Wave Lett., vol. 5, pp. 153—155, May 1995.
[21] R. F. Drayton, R. M. Henderson, and L. P. B. Katehi, “Ad-vanced monolithic packaging concepts for high performance circuits and antennas,” in Dig. 1996 IEEE MTT-S, June 1996, pp. 1615—1618.
[22] A. R. Brown and G. M. Rebeiz, “Micromachined micropack-aged filter banks,” IEEE Microwave Guided Wave Lett., vol. 8, pp. 158—160, Mar. 1998.
[23] C. Goldsmith, J. Randall, S. Eshelman, T. H. Lin, D. Denniston, S. Chen, and B. Norvell, “Characteristics of micromachined switches at microwave frequencies,” in Dig. IEEE MTT-S, June 1996, pp. 1141—1144.
[24] J. Yao and M. F. Chang, “A surface micromachined minia-ture switch for telecommunications applications with signal frequencies from DC to 4 GHz,” in Proc. 8th Int. Conf. Solid-State Sensors and Actuators, Transducers, June 1995, pp. 384— 387.
[25] Personal communications, Northrop Grumman, Baltimore, MD, 1997.
[26] Personal communications, HRL Laboratories, Malibu, CA, 1997.
[27] Personal communications, Honeywell Technology Center, Min-neapolis, MN, 1997.
[28] S. Pacheco, C. T.-C. Nguyen, and L. P. B. Katehi, “Microme-chanical electrostatic K-band switches,” presented at the IEEE MTT-S International Microwave Symposium, June 1998.
[29] G. P. Gauthier, A. Courtay, and G. M. Rebeiz, “Microstrip antennas on synthesized low dielectric constant substrates,” IEEE Trans. Antennas Propagat., vol. AP-45, pp. 1310—1314, Aug. 1997.
[30] J. Papapolymerou, R. F. Drayton, and L. Katehi, “Microma-chined patch antennas,” IEEE Trans. on Antennas Propagat., vol. AP-46, pp. 275—283, Feb. 1998.
[31] M. Stotz, G. Gottwald, and H. Haspeklo, “Planar millimeter-wave antennas using SiNx-membranes on GaAs,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1593—1595, Sept. 1996.
[32] T. J. Ellis and G. M. Rebeiz, “MM-wave tapered slot antennas on micromachined photonic bandgap dielectrics,” in Proc. IEEE MTT-S Int. Microwave Symp., June 1996, pp. 1157—1160
[33] T. J. Ellis, J. Muldavin, and G. M. Rebeiz, submitted for publication.
[34] Larson, L.E. “Microwave MEMS technology for next-generation wireless communications” Microwave Symposium Digest, 1999 IEEE MTT-S International , Volume: 3 , 1999 Page(s): 1073 -1076 vol.3
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top