跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/22 06:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳敏晟
研究生(外文):Min-Cheng Chen
論文名稱:末端結構設計對電致遷移生命期測試之影響
論文名稱(外文):Impact of End Segment Design on Electromigration Lifetime Test
指導教授:崔秉鉞
指導教授(外文):Bing-Yue Tsui
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:25
中文關鍵詞:電致遷移末端結構
外文關鍵詞:electromigrationendsegmentNIST
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
晶圓等級的電致遷移效應測試因為可以大幅縮短測試時間,在近幾年廣受重視。但是極重的加速測試條件,造成傳統的末端結構比待測導線更容易故障,適當的末端結構設計是晶圓等級的電致遷移效應測試可以實際應用的先決條件。
本論文以H. A. Schafft在1987年提出的四端點量測金屬導線電致遷移效應的主測試結構為基礎,再加上短路監控及HRR兩種監控電致遷移效應的結構,設計了一組完整的電致遷移效應測試結構。除了目前在參考文獻中所看過的標準NIST、三分支兩種末端結構之外,再設計等距箭尾、倍寬箭尾、10um分支間距、20um分支間距及30um分支間距等五種末端結構,以了解末端結構對電致遷移生命期測試的影響。
由數值模擬結果得知,10um分支間距、20um分支間距及30um分支間距等三種末端結構是因為分兩次將電流導入待測導線,因此所造成的電流密度梯度最小;其次是由待測導線兩倍線寬接45度緩衝區的標準NIST,由於有45度的緩衝區,所以電流密度的梯度也不大;再其次是三分支結構、等距箭尾與倍寬箭尾。因為這三種末端結構是將所有的電流在末端結構與待測導線的介面同時導入待測導線,箭尾結構中間的分支幾乎沒有作用。
在實際量測的結果方面,七種末端結構可以分為兩大族群:第一個族群是標準NIST、10um分支間距、20um分支間距及30um分支間距,第二個族群是三分支、等距箭尾、倍寬箭尾。第一個族群的生命期大約是第二個族群生命期的兩倍,除了10um分支間距及20um分支間距兩種末端結構之外,故障發生的位置幾乎都集中在陰極的末端結構或是陰極末端結構與待測導線的接合處。
將故障位置發生在待測導線與在末端結構上的樣品生命期分別統計,可以發現當故障發生在待測導線上時,不同末端結構對整個導線的生命期並沒有很明顯的影響當故障發生在末端結構上,不同的末端結構設計對測試結構的生命期影響甚鉅,標準NIST、10um分支間距、20um分支間距及30um分支間距等四種末端結構的生命期遠大於三分支、等距箭尾、倍寬箭尾等三種末端結構。這些結果與數值模擬的結果完全吻合。
由上述的實驗結果可以得知,末端結構的優劣可以從電流密度梯度判斷,不同的末端結構設計對電致遷移效應可靠度測試有決定性的影響。由於各種末端結構均無法避免故障的位置發生在末端結構上,所以在進行晶圓等級電致遷移效應量測時,必須逐一檢視樣本,剔除末端結構故障的數據,才能得到正確的結論。

Based on the electromigration test structure proposed by H. A. Schafft in 1987, a fully functioned test structure including extrusion monitor line and HRR structure is designed. Beside the standard NIST and 3-branch endsegments in the reference, we also design five endsegment including equidistant arrow, double line width arrow, distance=10um branch, distance=20um branch, and distance=30um branch, to observe the differences of electromigration lifetime test between 7 kinds of endsegments. MatLab and Origin softwares were also used to get the mathematics simulation of the current distribution on endsegments and metal lines. From the results of simulation, endsegments in distance=10um branch, distance=20um branch, and distance=30um branch cause the smallest current density gradient because the current is fed into the test line at two sections. As for the standard NIST structure, because of the 45˚ buffer area, it also has small current density gradient. And then, come the 3-branch, equidistant arrow, and double line width arrow. There is almost no function in the middle branch of the arrow endsegment, so the two arrow endsegments can be considered the same with 3-branch structure.
In the results of the real tests, we gather statistics of the sample lifetime according to the place of the failures. The results show that when the failure occurs on the test line, different endsegments have no remarkable influences on the lifetime of the test line as expected. However, when the failure occurs on the endsegment, different endsegments have large impact on the life time of the test structures. The lifetime of the standard NIST, distance=10um branch, distance=20um branch, and distance=30um branch is much longer than that of the 3-branch, equidistant arrow, and double line width arrow. These test results completely match with the simulation results.
According to the above experiment result, we realize that the quality of the endsegment can be judged from current density gradient. The different endsegments have decisive influence on electromigration reliability test. All endsegments can’t be excluded from occurring failures, so the samples in the wafer level reliability test for electromigration must be examined one by one carefully to pick off the failure data of endsegment. In this way, we can get the accurate conclusion.

論文摘要(中文) ……………………………………………………………Ⅰ
論文摘要(英文) ……………………………………………………………Ⅲ
誌謝…………………………………………………………………………Ⅵ
目錄…………………………………………………………………………Ⅶ
圖目錄………………………………………………………………………Ⅸ
第一章 緒論…………………………………………………………………1
1-1 金屬導線的可靠度測試………………………………………………1
1-1.1 封裝等級可靠度測試…………………………………………2
1-1.2 晶圓等級可靠度測試…………………………………………2
1-2 測試結構………………………………………………………………3
1-2.1 SWEAT……………………………………………………………3
1-2.2 NIST ……………………………………………………………4
1-3 末端結構效應…………………………………………………………4
1-3.1 溫度梯度………………………………………………………5
1-3.2晶粒結構 ………………………………………………………5
1-3.3 儲存器效應……………………………………………………6
1-4 論文架構………………………………………………………………6
第二章 研究方法……………………………………………………………8
2-1 測試結構………………………………………………………………8
2-2 製程流程 ……………………………………………………………10
2-3 數值模擬 ……………………………………………………………10
2-4 量測系統 ……………………………………………………………11
2-3.1 量測程式 ……………………………………………………12
2-3.2 量測設備 ……………………………………………………12
第三章 實驗結果 …………………………………………………………14
3-1 模擬結果 ……………………………………………………………14
3-2 量測結果 ……………………………………………………………15
3-3 金屬導線故障分析 …………………………………………………17
3-3.1 整體趨勢 ……………………………………………………18
3-3.2 導線故障分析 ………………………………………………18
3-3.3 末端結構故障分析 …………………………………………19
3-4 模擬與實際量測結果的比較 ………………………………………20
第四章 結論與展望 ……………………………………………………21
4-1 結論 …………………………………………………………………21
4-2 後續工作建議 ………………………………………………………22
參考文獻……………………………………………………………………23

[1] I. A. Blech,” Electromigration in thin Al films on TiN “ J. Phys., pp 1203-1208, 1976
[2] R. Frankovic, G. H. Bernstein,” Electromigration drift and threshold in Cu thin-film interconnects” Trans. On Electron Device, pp.2233-2239, 1996
[3] Milton Ohring, Reliability and Failure of Electronic Materials and Devices, ACADEMIC PRESS, pp. 264
[4] J. R. Black,” Electromigration - A brief survey and some recent result” Trans. On Electron Device, 1969, pp.338-347
[5] M. Rauf Gungor and Dimitrios Maroudas “Theoretical analysis of electromigration-induced failure of metallic thin films due to transgranular void propagation “J. Appl. Phys. , vol. 32, pp. 109-118, 1999
[6] K. Jonggook Kim; V. C. Tyree,; C. R. Crowell,” Temperature dependence of resistance in Black's equation and in calibration for SWEAT and NIST structures: the parameter T/sub EO/” Integrated Reliability Workshop Final Report, pp24-40, 1999
[7] J. C. A. Huang, W. T. K Chien,” Some practical concerns on isothermal electromigration tests” IEEE Transactions On Semiconductor Manufacturig, Vol. 14, No. 4, Nov. 2001
[8] R.S. Hijab, J. T. Yue, EIA/JEDEC Standard JESD61, 1992
[9] F. Giroux; C. Gounelle; N. Vialle; P. Mortini; G. Ghibaudo,” Current and temperature distribution impact on electromigration failure location in SWEAT structure” ICMTS, pp. 214 —217, 1994
[10] C.R. Crowell; C.-C. Shih; V.C. Tyree,” SWEAT structure design and test procedure criteria based upon TEARS characterization and spatial distribution of failures in iterated structures” Reliability Physics Symposium, pp.277-286, 1991
[11] F. Giroux; C. Gounelle; P. Mortini; G. Ghibaudo,” Wafer-level electromigration tests on NIST and SWEAT structures” Microelectronic Test Structures, ICMTS, pp.229-232, 1995
[12] S. Menon, J. Fazekas, J. V. Hagen, H. A. Schafft,” Impact of test-structure design and test methods for electromigration testing” IRW final report, pp.48-53, 1999
[13] H.A. Schafft, ”Thermal analysis of electromigration test structure” Trans. On Electron Device, pp. 664-672, 1987
[14] Annu. Book of ASTM Standards, F1259-89, vol. 10.04, 1989
[15] H.A. Schafft, T. C. Staton, J. Mandel, Trans.” Reproducibility of electromigration measurements” On Electron Device, pp. 673-681, 1987
[16] B. Baerg,” Recent problems in electromigration testing” IRPS, pp211-215, 1997
[17] H. Kawasaki, C. K. Hu,” An electromigration failure model of tungsten plug contacts/vias for realistic lifetime prediction” Symposium on VLSI Technology Digest of Technical Papers, pp. 192-193, 1996
[18] S. Sakala, S. Bothra,” Effects of W-plug via arrangement on electromigration lifetime of wide line interconnects” IITC, pp.116-118, 1998
[19] M. J. Dion,” Electromigration lifetime enhancement for lines with multiple branches” Annual IRPS, pp.324-332, 2000
[20] H. D. Munari, A. Scorzoni, F. Tamarri, F. Fantini,” Drawbacks to using NIST electromigration test-structures to test bamboo metal lines” Trans. On Electron Device, pp.2276-2279, 1994
[21] J. M. Towner,” Are electromigration failures lognormally distributed?” Proc. IRPS. P179, 1985
[22] S. Morgan, I. D. Muanari, A. Scorzoni, F. Fantini, G. Magri, C. Caprile, “Test structures for electromigration evaluation in submicron technology “ICMTS, pp.283-287, 1996
[23] G. L. Baldini, A. Scorzoni, Trans.” Interaction between electromigration and mechanical-stress-induced migration; New insights by a simple, wafer-level resistometric technique” On Electron Device, pp.469-475, 1991
[24] G. L. Baldini, I. De Munari. etc; “Electromigration in Thin-Films for Microelectronics”, Microelectron. Reliab. Vol. 33. No 11/12, pp. 1779-1805, 1993

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top