跳到主要內容

臺灣博碩士論文加值系統

(3.90.139.113) 您好!臺灣時間:2022/01/16 18:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李蓓欣
研究生(外文):Pei Hsin Lee
論文名稱:含氧摻雜SiC介電阻障層與Cu製程整合之研究
論文名稱(外文):Integration of Oxygen-doped SiC Dielectric Barrier layer and Copper Interconnect
指導教授:羅正忠羅正忠引用關係張鼎張
指導教授(外文):Jen-Chung LouTing-Chang Chang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:69
中文關鍵詞:介電阻障層含氧碳化矽
外文關鍵詞:Barrier LayerSiOC:H
相關次數:
  • 被引用被引用:1
  • 點閱點閱:481
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:1
本論文研究介電阻障層於多層導體連線製程上的應用。為了降低訊號傳遞的時間延遲,現今已經發展以金屬銅(電阻率為1.7μΩ-cm)來取代金屬鋁(電阻率為2.7μΩ-cm)成為導線的連線系統。而在降低電容方面,則朝向低介電常數 ( low-k ) 材料發展。但是在銅鑲嵌的製程與電性操作的環境下,溫度與電場的作用,銅極易擴散至低介電常數材料中,並與之發生反應,造成材料特性的劣化與漏電流增大,甚至導致介電質崩潰。因此,在符合製程相容性要求的前提之下,發展具抗銅金屬擴散特性的介電阻障層材料,便成為重要的研究課題。
目前一種含氧碳化矽(silicon carbide)材料薄膜,具有低的介電係數(k~3.7),因此受到廣大的矚目,而被應用於介電阻障層技術中﹐用來取代傳統具高介電係數的氮化矽(silicon nitride) (k~8),以降低導線系統的延遲時間。本論文將討論含氧碳化矽膜的基本物性及電性,以及經過研究探討發現其製程整合時遇到氧電漿處理後,打當氧電漿的時間越長,介電常數有增加的趨勢且其漏電特性越好,但是抗銅能力變差。

We know that the metal linewidth and spacing decreases with the device scaling, resulting in large RC time delay. Copper is an applicable alternative due to its low resistivity (1.7 -cm), which is much lower than that of Al (2.7 -cm). Besides, copper is more resistant to electromigration problem, which is a vital issue in device reliability. The diffusion barrier layer is also served as the etch stop layer during trench formation if necessary. Silicon nitride (SixNy) is the currently standard barrier layer material since it has been employed as a masking and passivating layer for a long time against diffusion of metal ions and moisture. Unfortunately, the relative high dielectric constant (~7) of SixN4yconflicts with the requirement of low dielectric IMD. Recently, a newly-developed dielectric barrier material, amorphous SiOC:H has aroused much attention
In this thesis, we observe that after O2 plasma treatment, the leakage current is decreased for both Al and Cu electrode and the resistance against Cu penetration of SiOC:H film is deteriorated after O2 plasma treatment

Abstract (Chinese) ……………………………………………………i
Abstract (English) …………………………………………………ii
Acknowledgment (Chinese) …………………………………………iii
Content …………………………………………………………………iv
Table Captions …………………………………………………………vi
Figure Captions ………………………………………………………vii
Chapter.1 Introduction
1.1 General Background ………………………………………………1
1.2 Motivation and Material Options………………………………3
1.3 Organization of This Thesis……………………………………4
Chapter. 2 Standard analysis of Silicon carbide film
2.1 Introduction……………………………………………………………6
2.2 Experimental Procedure………………………………………………7
2.3 Result and discussion…………………………………………………8
Chapter. 3 BTS measurement of silicon carbide
3.1Introduction …………………………………………………………11
3.2 Experimental Procedure……………………………………………12
3.3 Result and discussion ……………………………………………13
Chapter. 4 O2 Plasma treatment
4.1 Introduction…………………………………………………………14
4.2 Experimental Procedure……………………………………………15
4.3 Result and discussion ……………………………………………16
Chapter. 5 Conclusion…………………………………………………………………18
References…………………………………………………………………20
Vita…………………………………………………………………………21

[1] L. peters, “Pursuing the perfect low-k dielectric”, Semiconductor International, vol. 21, no. 10, Sept. P.64 (1998).
[2] P.T. Liu, T.C. Chang, Y.L. Yang, Y.F. Cheng and S.M.Sze, IEEE Trans. On Electron Devices 47, pp.1733, (2000)
[3] M. Rossnegal and D. Mikalsen, “Collimated magnetron sputter deposition”, J. Vac. Sci. Technol., A-9, P.261 (1991).
[4] T. Sakurai, “Closed-form expressions for interconnection delay, coupling and crosstalk in VLSI’s”, IEEE trans. Elec. Devices, 40, P.118 (1993).
[5] N. Awaya, H. Inokawa, E. Tamamoto, Y. Okazaki, M. Miyake, Y. Arita, and T. Kobayashi, “Evali\uation of a copper metalization process and the electrical characteristics of copper-interconnected quarter-micron CMOS,” IEEE Trans. Electron Device , vol. 39,pp.1206-1212,August 1996.
[6] J. Tao, N. W. Cheung, ad C. Hu, “Electromigration characteristics of copper interconnects,” IEEE Electron Device Lett.,vol.14,pp.249-251,May 1993.
[7] T. Lauinger, J. Moscchner, A. G. Aberle, and A. G. Hezel, “UV stability of highest-quality plasma silicon nitride passivation of silicon solar cells, “in Conf. Rec. 25th IEEE Photovoltaic Specialists Conf., 1996, pp. 413-419.
[8] S.M.Hu, “Properties of amorphous silicon nitride, “J. Electrochem. Soc.,vol. 33, pp. 693-698, 1966.
[9] V. Y. Doo, D. R. Nichols, and G. A. Silvery, “Preparation and properties of pyrolytic silicon nitride, “J. Electrochem. Soc., vol. 33, pp.1279-1281, Oct.1966.
[10] “The national technology roadmap for semiconductors, 1999 edition , ” Semiconductor International Association, San Jose, CA, 1999.
[11] P. Xu, K. Huang, A. Patel, S. Rathi, B. Tang, J. Ferguson, J Huang, and C. Ngai, “BLOK─A low k dielectric barrier/etch stop film for copper damascene applications,” in Proc. IEEE Int. Interconnect Technol. Conf., 1999,pp. 109-111.
[12] E. Gat, M. A. El Khakani, M. Chaker, A. Jean, S. Boily, H. Pepin, J. C. Kieffer, J. Durand, B. Cross, F. Rousseaux and S. Gugrathi, J. Mater. Res., 7 (1992) 2478.
[13] P.T. Liu, T.C. Chang, M.C. Huang, Y.L.Yang, Y.S.Mor, M. S. Tsai, H. Chung, J. Hou and S. M. Sze, Journal of the Electrochemical Socity,147 (11)4313-4317, (2000)
[14] M. P. Delplancke, J.M. Powers, G.J. Vandentop, M. Salmeron and G.A. Somorjai, J.Vac. Sci. Technol., A9 (1991) 450.
[15] S. M. Sze, Physics of Semiconductor Devices, Ch. 7, p. 402, Wiley, New York (1981).
[16] Kawakami, N.; Fukumoto, Y.; Kinoshita, T.; Suzuki, K.; Inoue, K.-I., Interconnect Technology Conference, 2000. Proceedings of the IEEE 2000 International , 2000, Page(s): 143 —145
[17] Y. Shacham-Diamand, A. Dedhia, D. Hoffstetter, and W. G. Oldham, “Copper transport in thermal SiO2 ,”J. Ecectrochem. Soc., vol. 140, no. 8, p. 2427-2432, 1993
[18] J. D. McBrayer, R. M. Swanson, and T. W. Sigmon, “ Diffusion of metals in Silicon Oxide,” J. Electrochem. Soc., vol.133, no. 6, p. 1241-1246, 1986
[19]J. S. H. Cho, H.-K.Kang, C. Ryu, and S. S. Wong, “Reliability of CVD Cu barrier interconnections,” in IEDM Tech. Dig., 1993, p. 265-268
[20] Chiang, S.-M. Tzeng, G. Raghavan, R. Villasol, G. Bai, M. Bohr, H. Fujimoto, and D. B. Fraser, “Dielectric barrier study for Cu metallization,” in Proc. VLSI Multilevel Interconnection Conf., 1994, p. 414-420
[21] A. L. S. Loke, C. Ryu, C. P. Yue, J. S. H. Cho, and S. S. Wong, “Kinetics of copper drift in PECVD dielectrics,”IEEE electron device Lett. Vol. 17, p. 549-511, Dec. 1996
[22] The Application of plasma to chemical Processing; Baddour, R. F.; Tim mins, R. S., Eds.; Massachusetts Institute of Technology Press: Cambridge, MA, 1967.
[23] Chemical Reactions in Electrical Discharges; Blaustein, B. D., Ed.; Advance in Chemistry Series 80; American Chemical Society: Washington, DC, 1969.
[24] Techniques and Applications of Plasma Chemistry; Hollahan, J. R.; Bell, A. T., EDS.; Wiley: New York, 1974.
[25] Reactions under Plasma Conditions; Venugopalan, M., Ed.; Wiley Interscience: New York, 1971.
[26] Irving, S. M. Proceedings of the Kodak Photoresist Seminar; Eastman Kodak: Syracuse, NY, 1968; Vol. II, p26.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top