跳到主要內容

臺灣博碩士論文加值系統

(54.83.119.159) 您好!臺灣時間:2022/01/17 10:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:秦玉龍
研究生(外文):Yu-Lung Chin
論文名稱:電遷移效應對銅金屬連線之危害
論文名稱(外文):Electromigration-Induced Failures in Cu-Based Metallization
指導教授:邱碧秀
指導教授(外文):Bi-Shiou Chiou
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:165
中文關鍵詞:電遷移應力遷移
外文關鍵詞:Cuelectromigrationstress migration
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1045
  • 評分評分:
  • 下載下載:128
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,將針對鉭金屬擴散阻障層(第4章)、低介電常數介電層聚亞醯銨PI2610(第5章)以及Cu/Al雙層結構合金(第6章)對銅金屬連線電遷移阻抗特性之影響作一深入之研究;第一個主題係研究鉭金屬擴散阻障層對銅金屬連線之微細構造、電遷移以及熱應力致電遷移特性之影響,第二個主題係研究及比較傳統介電材料及低介電常數材料間之熱傳導特性、微細構造、電遷移以及熱應力致電遷移特性之影響,第三個主題主要研究Cu/Al雙層結構合金對銅金屬連線之表面粗糙度、電阻、微細構造以及電遷移特性之影響。研究結果分述如下。
在鉭金屬擴散阻障層的研究方面,由於鉭具有與銅不互熔之材料特性,且最重要的是鉭金屬擴散阻障層有效強化銅之微細構造-其中包括銅之Cu(111)織構以及其晶粒大小,這主要是因為銅之Cu(111)晶面與鉭之β-Ta(200)晶面產生異質疊晶現象。在鉭金屬擴散阻障層對銅金屬連線之電遷移以及熱應力致電遷移特性之影響方面,Ta/Cu/Ta多層結構金屬導線在225ºC時之電遷移抵抗力大約為Cu單層結構金屬導線的二倍長;在歷經500次熱循環後,Ta/Cu/Ta多層結構金屬導線之電遷移抵抗力並未改變;而且,採用Ta/Cu/Ta多層結構金屬導線的電遷移抵抗力增加為Cu單層結構金屬導線的三倍長;Ta/Cu/Ta多層結構金屬導線與Cu單層結構金屬導線的電遷移活化能分別為0.77 eV與0.65 eV;在歷經500次熱循環後,Ta/Cu/Ta多層結構金屬導線之電遷移生命週期預測為100年,約比Cu單層結構金屬導線電遷移生命週期長十倍,這主要是因為鉭金屬擴散阻障層有效強化銅之織構及其晶粒,在本研究中銅之微細構造對銅金屬連線之電遷移以及熱應力致電遷移特性扮演極重要的角色,另外,相對於銅與介電層之介面,銅與鉭金屬擴散阻障層之介面有效減低電遷移效應,且鉭金屬擴散阻障層有提供電流分流的作用。其中Ta/Cu/Ta多層結構金屬導線之電遷移抵抗力低於Vaidya and Sinha的預測主要歸因於銅與鉭金屬擴散阻障層之介面仍是電遷移之主要擴散路徑。
在低介電常數介電層聚亞醯銨PI2610的研究方面,為探討採用低介電常數介電層之可行性,我們分別比較了聚亞醯銨PI2610 與 PETEOS SiO2兩種介電層的熱特性及其電遷移抵抗力,實驗結果顯示在PI2610基材上之銅金屬導線的熱阻抗是在PETEOS SiO2基材上的三倍,由於焦耳熱效應作用,當在PI2610基材上之銅金屬導線歷經電流密度1.4´107 A/cm2後75秒即因焦耳熱效應所產生之高溫使銅金屬導線呈現開路現象,其銅金屬導線開路主要是因為銅金屬導線上之溫度已超過聚亞醯銨PI2610的熱分解溫度。在低介電常數介電層聚亞醯銨PI2610對銅金屬導線之電遷移以及熱應力致電遷移特性之影響方面,在研究中我們發現介電層的高熱阻抗特性是造成電遷移破壞過程中金屬導線電阻值有較高之變化率的成因之一,銅金屬導線在PI2610基材與PETEOS SiO2基材上的電遷移活化能分別為0.87 eV與0.65 eV;在歷經500次熱循環後,在PI2610基材上之銅金屬導線的電遷移生命週期預測為79年,遠優於在PETEOS SiO2基材上之銅金屬導線(8年)。
在Cu/Al雙層結構合金的研究方面,實驗結果顯示鋁金屬基材上有效強化銅之微細構造與提高銅膜之表面平整度之效應,這主要是因為鋁與銅具有相同之立方晶體結構(面心立方),以及鋁與銅其(111)面最靠近原子的間距只有10.7%,因此有效強化銅膜之I(111)/I(200)織構比;同時,當我們採用較厚之鋁金屬基材能更有效強化銅膜之Cu (111)優選方向。在Cu/Al雙層結構合金的電阻值方面,其電阻值隨毎增加1nm厚的鋁金屬基材大約增加0.2 mW•cm,這要比直接使用Al(Cu)合金來的低。在鋁金屬基材對銅金屬連線之電遷移之影響方面,鋁金屬基材有效提升銅金屬連線之電遷移抵抗力,在225ºC與電流密度1.2´107 A/cm2的測試條件下,採用50nm厚的鋁金屬基材的銅金屬連線之電遷移抵抗力大約為Cu單層結構金屬導線的十倍長。

This thesis studies the relationship between electromigration resistances of Cu-based metallization with the diffusion barrier layer of tantalum (Chapter 4), the low dielectric constant polyimide of PI2610 (Chapter 5), and the alloy of Cu/Al (Chapter 6), respectively. The first topic focuses on the effects of a Ta barrier layer on the microstructure, electromigration and thermal-stress-enhanced electromigration of Cu interconnects. The second topic is the effects of low dielectric constant underlayer on the thermal characteristics, microstructure, electromigration and thermal-stress-enhanced electromigration of Cu interconnects. The final topic studies the effects of a Cu/Al alloy on the surface morphology, electrical resistance, microstructure, and electromigration resistance of copper interconnects. The results are described as follows.
The immiscible Ta barrier layer enhances the microstructures of Cu films, both the (111) texture and the median grain size of the annealed Cu films increases, due to the heteroepitaxial relationship between the hexagonal close-packed atomic array in the Cu(111) plane and the pseudohexagonal configuration of β-Ta(200). At 225ºC, the electromigration median time-to-failure (MTF) of Ta/Cu/Ta multilayer interconnects is about two times longer than that of Cu monolayer interconnects. After 500 thermal cycles, the MTF of Ta/Cu/Ta multilayer interconnects does not change and is about three times longer than that of Cu monolayer interconnects. The activation energy Ea of electromigration of Ta/Cu/Ta multilayer interconnects is 0.77 eV, which is higher than that of Cu monolayer interconnects (0.65 eV). A lifetime of 100 years is predicted for Ta/Cu/Ta multilayer interconnects with and without 500 thermal cycle stresses. Since the Ta/Cu/Ta specimen has enhanced crystallographic texture and larger grain size, it has both higher electromigration endurance and thermal stress resistance than Cu. In this work, the microstructure of thin film conductors is of vital importance to influence electromigration behavior, where crystallographic texture, grain size, and grain size distribution impact the reliability of Cu-based metallizations. Moreover, compare with the Cu/liner surfaces, the capping layers of Ta suppress the interface migration and act as a shunt layer. However, the measured MTF is shorter than that predicted by an equation proposed by Vaidya and Sinha. The shorter MTF and smaller Ea values for the Ta/Cu/Ta multilayer compared to the predicted ones are due to the weak Ta/Cu interface.
To evaluate the feasibility of the low dielectric constant polyimide for the intermetal dielectric applications, the thermal characteristics and electromigration resistance of two dielectrics, PI2610 and PETEOS SiO2, are investigated. It is shown that the thermal impedance of metal lines on polyimide is about three times of those on PETEOS SiO2. The open-circuit failure occurs after 75 sec stressing at a current density of 1.4´107 A/cm2 for specimens with polyimide underlayer due to the high joule heating effect which causes the extreme high temperature rise at interconnects. Hence, decomposition of polyimide occurred which further accelerated the breakdown of interconnects. The thermal impedance is one of the major reasons which cause the electrical resistance change during electromigration test. The activation energies for electromigration of Cu are 0.87 eV for SiO2/Cu/PI2610 and 0.65 eV for SiO2/Cu/ SiO2. After 500 thermal cycles, both the median time to failure and activation energy Ea decrease for EM, and lognormal standard deviation increases. At 225ºC, the median time to failure of SiO2/Cu/PI2610 is about two times longer than that of SiO2/Cu/ SiO2. A lifetime of 79 years is predicted for SiO2/Cu/PI2610 specimens with 500 thermal cycles stresses.
The effects of Al underlayer with respect to texture control and electromigration resistance of Cu films are investigated in this study. The Al underlayer enhances the (111) texture of Cu films and the surface smoothness of the annealed Cu film. The same cubic crystal structure (face-centered cubic) and small difference of the nearest interatomic distance of the (111) plane between Cu and Al result in the increase of the peak ratio I(111)/I(200) of Cu films. The thicker the Al film, the more preferred the Cu (111) orientation. The resistivity of the Cu/Al bilayer film, which increases at about 0.2 mW•cm per 1-nm-thick Al underlayer, is smaller than the reported value of single phase Cu(Al) solution. The electromigration resistance of Cu interconnects is also improved when the Al underlayer is present. The median time to failure of Cu interconnects with a 5-nm-thick Al underlayer is longer by one order of magnitude than that without an Al underlayer at 240°C and 12 MA/cm2.

Abstract (in Chinese)
Abstract (in English)
Acknowledgment (Chinese)
Contents
List of Tables
Figures Captions
Chapter 1Introduction
Chapter 2Literature Review
2-1 Electromigration Mechanism
2-1-1 The Driving Force of Electromigration
2-1-2 Mechanical Stress Induce Atomic Back Flux (Counteracting Force)
2-1-3 Black Model
2-2 Effect of Microstructure on Thin-Film Lines Reliability
2-2-1 Crystallographic Texture of Cu-Based Metallization
2-2-2 Grain Structure of Cu-Based Thin Films
2-3 Effect of Metal Line Geometry on Electromigration Test Structure Design
2-3-1 Line width Dependence of Electromigration Lifetime
2-3-2 Line Length Dependence of Electromigration Lifetime
2-3-3 Line Thickness Dependence of Electromigration Lifetime
2-4 Measurement Techniques
2-4-1 Practical Implementation of the Black Model -the Method of Median Time-To-Failure
2-4-2 Test Structure Design
2-4-3 Determine the Temperature of Thin Film Conductors
Chapter 3Experimental Procedures
3-1 Sample Preparation
3-1-1 Substrate Dielectric Deposition
3-1-2 Metal Thin Film Deposition
3-2 Measurements and Analyses Techniques
3-2-1 X-Ray Diffraction Analyses (XRD)
3-2-2 Scanning Electron Microscopy (SEM)
3-2-3 Transmission Electron Microscope (TEM)
3-2-4 Atomic Force Microscopy (AFM)
3-2-5 Spectrophotometer (n&k analyzer)
3-2-6 Sheet Resistance Measurements
3-3 Electromigration and Thermal-Stress-Enhanced Electromigration Measurement
Chapter 4 Effect of the tantalum barrier layer on the reliability of copper interconnect
4-1 Introduction
4-2 Microstructures
4-3 Electromigration
4-4 Effect of Thermal Stress on Electromigration Failure Time
4-5 Summary
Chapter 5Effects of the Underlayer Dielectric on the Thermal Characteristics and Electromigration Resistance of Copper Interconnect
5-1 Introduction
5-2 The effect of underlayer dielectric on the thermal characteristics of interconnect
5-3 Microstructures
5-4 Electromigration
5-5 Thermal Stress Effect on Electromigration Failure Time
5-6 Summary
Chapter 6Effect of Aluminum Seed Layer on the Reliability of Copper Interconnect
6-1 Introduction
6-2 Relationship Between Cu(111) Texture and the Thickness of Al Seed Layer
6-3 Surface Morphology
6-4 Resistivity
6-5 Electromigration Characteristics of Cu/Al Bilayer Interconnects
6-6 Summary
Chapter 7Conclusions
7-1 The Effect of the Diffusion Barrier Layer of Tantalum, the Low Dielectric Constant Polyimide of PI2610, and the Alloy of Cu/Al on Microstructure of Copper Metallization
7-2 The effect of the diffusion barrier layer of tantalum, the low dielectric constant polyimide of PI2610, and the alloy of Cu/Al on electromigration resistance of Copper metallization
7-3 The effect of the low dielectric constant polyimide of PI2610 on the thermal characteristics of Copper metallization
References

[1] R.H. Dennard, F.H. Gaensslen, H.N. Yu, V.L. Rideout, E. Bassous, and A.R. LeBlanc, “Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions”, IEEE J. Solid-State Circuits, SC-9, pp. 256-268, 1974.
[2] M. Bohr, “MOS Transistors: Scaling and Performance Trends”, Semiconduct. Int., 18, pp. 75-80, 1995.
[3] P. K. Chatterjee, W. R. Hunter, A. Amerasekera, S. Aur, C. Duvvury, P.E. Nicollian, L.M. Ting, and P. Yang, “Trends for Deep Submicron VLSI and Their Implications for Reliability”, IRPS, pp. 1-11, 1995.
[4] L. Peters, “Speeding the Transition to 0.18mm”, Semiconduct. Int., January, pp. 61-70, 1998.
[5] H. Iwai, “CMOS Technology- Year 2010 and Beyond”, IEEE J. Solid-State Circuits, 34, pp. 357-366, 1999.
[6] T. Sakurai, “ Approximation of Wiring Delay in MOSFET LSI”, IEEE J. Solid-State Circuits, SC-18, pp. 418-426, 1983.
[7] M. Bohr, “Interconnect Scaling — The Real Limiter to High Performance ULSI” IEDM, pp. 241-244, 1995.
[8] M. Bohr, “ Technology Development Strategies for the 21st Century”, Appl. Surf. Sci., 100-101, pp. 534-540, 1996.
[9] M. Bohr and Y.A. El-Mansy, “Technology for Advanced High-Performance Microprocessors”, IEEE Trans. Electron Devices, 45, pp. 620-625,1998.
[10] S.C. Sun, “Process Technologies for Advanced Metallization and Interconnect Systems”, IEDM, pp. 765-768, 1997.
[11] L. Peters, “Pursuing the Perfect Low-k Dielectric”, Semiconduct. Int., 21, pp. 64-74, 1998.
[12] M. Bohr, S.S. Ahmed, S.U. Ahmed, M. Bost, T. Ghani, J. Greason, R. Hainsey, C. Jan, P. Packan, S. Sivakumar, S. Thompson, J. Tsai, and S. Yang, “A High Performance 0.25 mm Logic Technology Optimized 0.18V Operation”, IEDM, pp. 847-850, 1996.
[13] S. Yang, S. Ahmed, B. Arcot, R. Arghavani, P. Bai, S. Chambers, P. Charvat, R. Cotner, P. Packan, I. Post, S. Sivakumar, J. Steigerwald, M. Taylor, B. Tufts, S. Tyagi, and M. Bohr, “A High Performance 180 nm Generation Logic Technology”, IEDM, pp. 197-200, 1998.
[14] S. Yang, M. Alavi, R. Bigwood, T. Bramblett, J. Brandenburg, W. Chen, B. Crew, M. Hussein, P. Jacob, C. Kenyon, C. Lo, B. Mcintyre, Z. Moon, P. Nguyen, L. Rumaner, R. Schweinfurth, S. Sivakumar, M. Stettler, S. Thompson,B. Tufts, J. Xu, S. Yang, and M. Bohr, “A 130 nm Generation Logic Technology featuring 70nm Transistors, Dual Vt Transistors and 6 Layers of Cu Interconnects”, IEDM, pp. 567-570, 2000.
[15] T.H. Ning, “0.1mm Technology and BROL”, Mat. Res. Soc. Symp. Proc., 427, pp. 17-21, 1996.
[16] S. Hamilton, “Taking Moore's Law into the Next Century”, Computer, 32, pp. 43-48, 1999.
[17] M. Miyamoto, T. Takeda, and T. Furusawa, “High-Speed and Low-Power Interconnect Technology for Sub-Quarter-Micron ASIC’s”, IEEE Trans. Electron Devices, 44, pp. 250-256, 1997.
[18] K. Yamashita and S. Odanaka, “Interconnect Scaling Scenario Using a Chip Level Interconnect Model”, Symposium on VLSI Technology Digest of Technical, pp. 53-54, 1997.
[19] K.C. Saraswat, F. Mohammadi, “Effect of Scaling of Interconnections on the Time Delayer of VLSI Circuits”, IEEE Trans. Electron Devices, ED-29, pp. 645-650, 1982.
[20] S.-Y. Wu, B.-K. Liew, K.L. Young, C.H. Yu, and S.C. Sun, “Analysis of Interconnect Delay for 0.18 mM Technology and Beyond”, IITC, pp. 68-70, 1999.
[21] S. Bothra, B. Rogers, M. Kellam, C. M. Osburn, “Analysis of the Effects of Scaling on Interconnect Delay in ULSI Circuits”, IEEE Trans. Electron Devices, 40, pp. 591-597, 1993.
[22] D. Sylvester, C. Hu, O.S. Nakagawa, and S.-Y. Oh, “Interconnect Scaling: Signal Integrity and Performance in Future High-Speed CMOS Designs”, Symposium on VLSI Technology Digest of Technical, pp. 42-43, 1998.
[23] S.P. Murarka, “Multilevel Interconnections for ULSI and GSI era”, Mater. Sci. & Eng., R19, pp. 87-151, 1997.
[24] H.B. Bakoglu, Circuit, Interconnections, and Packaging for VLSI, Addison-Wesley, New York, 1990.
[25] P.C. Li and T.K. Young, “Electromigration: the Time Bomb in Deep-Submicron ICs”, IEEE Spectrum, September, pp. 75-78, 1996.
[26] A.M. Brown and M.F. Ashby, “Correlation for Diffusion Constants”, Acta Metallurgica, 28, pp. 1085-1101, 1980.
[27] C.S. Hau-Riege and C.V. Thompson, “Electromigration in Cu interconnects with very different grain structures”, Appl. Phys. Lett., 78, pp. 3451-3453, 2001.
[28] C.Y. Chang and S.M. Sze, ULSI Technology, Mcgraw-Hill, New York, 1996.
[29] T. Fukada, T. Mori, Y. Toyda, M. Hasegawa, K. Namba , and K. Ogata, “Electromigration Resistance of TiWN/Cu/TiWN Interconnect”, Appl. Surf. Sci., 91, pp. 227-233, 1995.
[30] P.J. Ding, W.A. Lanford, S. Hymes, S.P. Murarka, “Effects of the Addition of Small Amounts of Al to Copper: Corrosion, Resistivity, Adhesion, Morphology, and Diffusion”, J. Appl. Phys., 75, pp. 3627-3631, 1994.
[31] J.-C. Chang and M.-C. Chen, “Passivation of Cu by Sputter-Deposited Ta And Reactively Sputter-Deposited Ta-Nitride Layers”, J. Electrochem. Soc., 145, pp. 3170-3176, 1998.
[32] M. O’Reilly, X. Jiang, J. T. Beechinor, S. Lynch, C. N. Dheasuna, J. C. Patterson and G. M. Crean, “Investigation of the Oxidation Behaviour of Thin Film and Bulk Copper”, Appl. Surf. Sci., 91, pp. 152-156, 1995.
[33] J. Li, Y. Shacham-Diamand, and J. W. Mayer, “Thermal Stability Issues in Copper Based Metallization”, Proc. VMIC, pp. 153-159, 1991.
[34] J. Cho, “Process Integration Issues of Copper Interconnections for ULSI”, Doctoral Disseration, Stanford University, 1994.
[35] J. D. McBrayer, R. M. Swanson and T. W. Sigmon, “Diffusion of Metals in Silicon Dioxide”, J. Electrochem. Soc., 133, pp. 1242-1246, 1986.
[36] D. Gupta: Mater, “Diffusion in Several Materials Relevant to Cu Interconnection Technology”, Mater. Chem. & Phy., 41, pp. 199-205, 1995.
[37] Y. Shacham-Diamand, A. De. Shacham-Diamand, A. Dedhia, D. Hoffstetter and W. G. Oldham, “Copper Transport in Thermal SiO2”, J. Electrochem. Soc., 140, pp. 2427-2432, 1993.
[38] S.M. Sze, Physics of Semiconductor Devices, John Willey & Sons, Taiwan, 1981.
[39] S.P. Murarka, Metallization Theory and Practice for VLSI and ULSI, Butterworth-Heinemann, 1993.
[40] S. W. Russell, S. A. Rafalski, R. L. Spreitzer, J. Li, M. Moinpour, F. Moghadam and T. L. Alford, “Enhanced Adhesion of Copper to Dielectrics Via Titanium and Chromium Additions and Sacrificial Reactions”, Thin Solid Films, 262, pp. 154-167, 1995.
[41] J.A. King, Materials Handbook for Hybrid Microelectronics, Artech House, Boston, 1988.
[42] T. Kwok, “Effect of Metal Line Geometry on Electromigration Lifetime in Al-Cu Submicron Interconnects”, IRPS, pp. 185-191, 1988.
[43] B.N. Agarwala, M.J. Attardo, and A.P. Ingraham, “Dependence of Electromigration-Induced Failure Time on Length and Width of Aluminum Thin-Film Conductors”, J. Appl. Phys., 41, pp. 3954-3960, 1970.
[44] C.S. Hau-Riege and C.V. Thompson, “The Effects of Microstructural Transitions at Width Transitions on Interconnect Reliability”, J. Appl. Phys., 87, pp. 8467-8472, 2000.
[45] S.R. Wilson and C.J. Tracy, Handbook of Multilevel Metallization for integrated Circuits: Materials, Technology, and Applications, Noyes, New Jersey, 1993.
[46] A. Christou, Electromigration and Electronic Device Degradation, John Wiley & Sons, New York, 1994.
[47] P.S. Ho and T. Kwok, “Electromigration in Metals”, Rep. Prog. Phys., 52, pp. 301-348, 1989.
[48] D. Gupta and P.S. Ho, Diffusion Phenomena in Thin Films and Microelectronic Materials, Noyes, New Jersey, 1988.
[49] K._N. Tu, J.W. Mayer, and L. C. Feldman, Electronic Thin Film Science for Electrical Engineers and Materials Scientists, Macmillan Publishing Company, New York, 1992.
[50] D.G. Pierce and P.G. Brusius, “Electromigration: a Review”, Microelectron. Relia., 37, pp. 1053-1072, 1997.
[51] J.W. McPherson, H.A. Le, and C.D. Graas, “Reliability Challenges for Deep Submicron Interconnects”, Microelectron. Relia., 37, pp. 1469-1477, 1997.
[52] D. Young and A. Christou, “Failure Mechanism Models for Electromigration”, IEEE Trans. Reliability, 43, pp. 186-192.
[53] C. Kittel, Introduction to Solid State Physics, John Wiley &Sons, New York, 1996.
[54] V.B. Fiks, “On the Mechanism of the Mobility of Ions in Metals”, Sov. Phys.- Solid State, a, pp. 14-28, 1959.
[55] H.B. Huntington and A.R. Grone, “Current-Induced Marker Motion in Gold Wires”, J. Phys. Chem. Solids, 20, pp. 76-87, 1961.
[56] R. S. Sorbello, “Theory of the Direct Force in Electromigration”, Phys. Rev. B, 31, pp. 798-804, 1985.
[57] R. P. Gupta, “Theory of Electromigration in Noble and Transition Metals”, Phys. Rev. B, 25, pp. 5188-5196, 1982.
[58] R. Rosenberg and L. Berenbaum, “Resistance Monitoring and Effects of Nonadhesion During Electromigration in Aluminum Films”, Appl. Phys. Lett., 12, pp. 201-204, 1968.
[59] I.A. Blech and E.S. Meieran, “Electromigration in Thin Films”, J. Appl. Phys., 40, pp. 485-491, 1969.
[60] H.-K. Kao, G.S. Cargill III, and C.-K. Hu, “Electromigration of Copper in Al(0.25 At. % Cu) Conductor Lines”, J. Appl. Phys., 89, pp. 2588-2597, 2001.
[61] J. Cho and C.V. Thompson, “Grain Size Dependence of Electromigration-Induced Failures in Narrow Interconnects”, Appl. Phys. Lett., 54, pp. 2577-2579, 1989.
[62] A.N. Campbell, R.E. Mikawa, and D.B. Knorr, “Relationship Between Texture and Electromigration Lifetime in Sputtered Al-1%Si Thin Films”, J. Electron. Mater., 22, pp. 589-596, 1993.
[63] Y.-C. Joo, C.V. Thompson, S.P. Baker, and E. Arzt, “Electromigration Proximity Effects of Two Neighboring Fast-Diffusion Segments in Single-Crystal Aluminum Lines”, J. Appl. Phys., 85, pp. 2108-2113, 1999.
[64] J. Cho and C.V. Thompson, “Electromigration-Induced Failures in Interconnects with Bimodal Grain Size Distribution”, J. Electron. Mater., 19, pp. 1207-1212, 1990.
[65] C.-K. Hu, M.B. Smal, and P.S. Ho, “Electromigration in Al(Cu) Two-Level Structures: Effect of Cu and Kinetics”, J. Appl. Phys., 74, pp. 969978, 1993.
[66] C.-K. Hu, R. Rosenberg, and K.Y. Lee, “Electromigration Path in Cu Thin-Film Lines”, Appl. Phys. Lett., 74, pp. 2945-2947, 1999.
[67] C.-K. Hu, R. Rosenderg, H.S. Rathore, D.B. Nguyen, and B. Agarwala, “Scaling Effect on Electromigration in On-Chip Wiring”, IITC, pp. 267-269, 1999.
[68] C.-K. Hu, L. Gignac, S.G. Malhotra, and R. Rosenberg, “Mechanism for Very Long Electromigration Lifetime in Dual-Damascene Cu Interconnections”, Appl. Phys. Lett., 78, pp. 904-906, 2001.
[69] C.-K. Hu, K.Y. Lee, L. Gignac, and R. Carruthers, “Electromigration in 0.25 μm Wide Cu Line on W’, Thin Solid Films, 308-309, pp. 443-447, 1997.
[70] R.W. Vook, “Electrical Control of Surface Electromigration Damage”, Thin Solid Films, 305, pp. 286-291, 1997.
[71] B.-H. Jo and R.W. Vook, “In-Situ Ultra-High Vacuum Studies of Electromigration in Copper Films”, Thin Solid Films, 262, pp. 129-134, 1995.
[72] Y.-L. Chin, B.-S. Chiou, and W.-F. Wu, “Effect of Aluminum Seed Layer on the Crystallographic Texture and Electromigration Resistance Of Physical Vapor Deposited Copper Interconnect”, Jpn. J. Appl. Phys., 39, pp. 6708-6715, 2000.
[73] Y.-L. Chin, B.-S. Chiou, and W.-F. Wu, “Effect of the Tantalum Barrier Layer on the Electromigration and Stress Migration Resistance of Physical-Vapor-Deposited Copper Interconnect”, to appear in Jpn. J. Appl. Phys., (2002).
[74] I.A. Blech, “Electromigration in Thin Aluminum Films on Titanium Nitride”, J. Appl. Phys., 47, pp. 1203-1208,1976.
[75] I.A. Blech and C. Herring, “ Stress Generation by Electromigration”, Appl. Phys. Lett., 29, pp. 131-133, 1976.
[76] E. Glickman, N. Osipov, A. Ivanov, and M. Nathan, “Diffusional Creep as a Stress Relaxation Mechanism in Electromigration”, J. Appl. Phys., 83, pp. 100-107, 1998.
[77] I.A. Blech and K.L. Tai, “Measurement of Stress Gradients Generated by Electromigration”, Appl. Phys. Lett., 30, pp. 387-389, 1977.
[78] L. Arnaud, G. Tartavel, P. Waltz, and L. Ulmer, “Analysis of Blech Product Threshold in Passivated AlCu Interconnects”, IITC, pp. 289-291, 1998.
[79] J.R. Lloyd and P.M. Smith, “The effect of Passivation Thickness on the Electromigration Lifetime of Al/Cu Thin Film Conductors”, J. Vac. Sci. Technol. A, 1, pp.455-458, 1983.
[80] R.S. Hemmert and M. Costa, “Electromigration-Induced Compresses in Encapsulated Thin-Film Conductor”, IRPS, pp. 64-69, 1991.
[81] J.J. Clement and C.V. Thompson, “Modeling Electromigration-Induced Stress Evolution in Confined Metal Lines”, J. Appl. Phys., 78, pp. 900-904, 1995.
[82] I.R. Black, “Electromigration Failure Model in Aluminum Metallization for Semiconductor Devices”, Proc. IEEE, 57, pp. 1587-1594,1969.
[83] P.B. Ghate, “Electromigration-Induced Failures in VLSI Interconnects”, IRPS, pp. 292-299, 1982.
[84] F. Fantini, J.R. Lloyd, I. De Munari, and A. Scorzoni, “Electromigration Testing of Integrated Circuit Interconnections”, Microelectronic Eng., 40, pp. 207-221, 1998
[85] K.P. Rodbell, D.B. Knorr, and J.D. Mis, “The Microstructure, Mechanical Stress, Texture, and Electromigration Behavior of Al-Pd Alloys”, J. Electron. Mater., 22, pp. 597-606, 1993.
[86] S. Vaidya and A.K. Sinha, “Effecct of Texture and Grain Structure on Electromigration in Al-0.5%Cu Thin Films”, Thin Solid Films, 75, pp. 253-259, 1981.
[87] M. Kageyama, K. Hashimoto, and H. Onoda, “Formation of Texture Controlled Aluminum and Its Migration Performance in Al-Si/TiN Stacked Structure”, IRPS, pp. 97-101, 1991.
[88] D.B. Knorr and D.P. Tracy, “Correlation of Texture with Electromigration Behavior in Al Metallization”, Appl. Phys. Lett., 59, pp. 3241-3243, 1991.
[89] H. Onoda, M. Kageyama, and K. Hashimoto, “Al-Si Crystallographic-Orientation Transition in Al-Si/TiN Layered Structures and Electromigration Performance as Interconnects”, J. Appl. Phys., 77, pp. 885-892, 1995.
[90] K.T. Lee, J.A. Szpunar, A. Morawiec, D.B. Knorr, and K.P. Rodbell, “Correlation Between Special Grain Boundaries and Electromigration Behaviour of Aluminum Thin Films”, Canadian Metallurgical Quarterly, 34, pp. 287-292, 1995.
[91] B.N. Agarwala, B. Patnaik, and R. Schnitzel, “Effect of Microstructure on the Electromigration Lifetime of Thin-Film Al-Cu Conductors”, J. Appl. Phys., 43, pp. 1487-1493, 1972.
[92] C. Ryu, A.L.S. Loke, T. Nogami, and S.S. Wong, “Effect of Texture on the Electromigration of CVD Copper”, IRPS, pp. 201-205, 1997.
[93] K. Abe, Y. Harada, and H. Onoda, “Cu Damascene Interconnects with Crystallographic Texture Control and Its Electromigration Performance”, IRPS, pp. 342-347, 1998.
[94] C. Ryu, K.-W. Kwon, A.L.S. Loke, R. A. Kavari, G.W. Ray, and S.S. Wong, “Microstructure and Reliability of Copper Interconnects”, IEEE Trans. Electron Devices, 46, pp. 1113-1120, 1999.
[95] K. Abe, Y. Harada, and H. Onoda, “Study of Crystal Orientation in Cu Film on TiN Layered Structures”, J. Vac. Sci. Technol. B, 17, pp. 1464-1469, 1999.
[96] D.B. Knorr and K.P. Rodbell, “The role of texture in the electromigration behavior of pure aluminum lines”, J. Appl. Phys., 79, pp. 2409-2417, 1996.
[97] L. Arnaud, G. Tartavel, T. Berger, D. Mariolle, Y. Gobil, and I. Touet, “Microstructure and Electromigration in Copper Damascene Lines”, Microelectron. Relia., 40, pp. 77-86, 2000.
[98] L. Arnaud, G. Tartavel, T. Berger, D. Mariolle, Y. Gobil, and I. Touet, “Microstructure and Electromigration in Copper Damascene Lines”, IRPS, pp. 263-269, 1999.
[99] J. Proost, T. Hirato, T. Furuhara, K. Maex, and J.-P. Celis, “Microstructure and Electromigration-Induced Drift in Electroplated Damascene Cu”, J. Appl. Phys., 87, pp. 2792-2802, 2000.
[100] C.-K. Hu, “Electromigration Failure Mechanisms in Bamboo-Grained Al(Cu) Interconnections”, Thin Solid Films, 260, pp. 124-134, 1995.
[101] D.P. Tracy and D.B. Knorr, “Texture in Multilayer Metallization Structures”, J. Appl. Phys., 76, pp. 2671-2680, 1994.
[102] C.V. Thompson and R. Carel, “Texture Development in Polycrystalline Thin Films”, Mater. Sci. & Eng., B32, pp. 211-219, 1995.
[103] R.A. Schwarzer and D. Gerth, “The effect of grain orientation on the relaxation of thermomechanical stress and hillock growth in Al-1%Si conductor layers on silicon substrates”, J. Electron. Mater., 22, pp. 607-610, 1993.
[104] R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed., John wiley & Sons, 1989.
[105] D.P. Tracy and D.B. Knorr, “Texture and Microstructure of Thin Copper Films”, J. Electron. Mater., 22, pp. 611-616, 1993.
[106] C.-A. Chang, “Formation of Copper Silicides from Cu(100)/Si(100) and Cu(111)/Si(111) Structures”, J. Appl. Phys., 67, pp. 566-569, 1990.
[107] Y.-C. Joo and C.V. Thompson, “Electromigration-Induced Transgranular Failure Mechanisms in Single-Crystal Aluminum Interconnects”, J. Appl. Phys., 81, pp. 6062-6072, 1997.
[108] C.-K. Hu, K.P. Rodbell, T.D. Sullivan, K.Y. Lee, D.P. Bouldin, “Electromigration and Stress-Induced Voiding in Fine Al and Al-Alloy Thin-Film Lines”, IBM J. Res. Develop., 39,pp. 465-497, 1995.
[109] J.A. Thornton, “The Microstructure of Sputter-Deposited Coatings”, J. Vac. Sci. Technol. A, 4,pp. 3059-3065,1986.
[110] H.T.G. Hentaell, C.R.M. Grovenor, and D.A. Smith, “Grain Structure Variation with Temperature for Evaporated Metal Films”, J. Vac. Sci. Technol. A, 2, pp. 218-219, 1984.
[111] C.R.M. Grovenor, H.T.G. Hentzell, and D.A. Smith, “The Development of Grain Structure During Growth of Metallic Films”, Acta Metallurgica, 32, pp. 773-781, 1984.
[112] D.B. Knorr and D.P. Tracy, “A Review of Microstructure in Vapor Deposited Copper Thin Films”, Mater. Chem. Phys., 41, pp. 206-216, 1995.
[113] J.S. Huang, J. Zhang, A. Cuevas, and K.N. Tu, “Recrystallization and Grain Growth In Bulk Cu and Cu(Sn) Alloy”, Mater. Chem. Phys., 49, pp. 33-41, 1997.
[114] L. Berenbaum, “Electromigration Damage of Grain-Boundary Triple Points in Al Thin Films”, Communications, pp. 880-882, 1970.
[115] M.J. Attardo, R. Rutledge, and R.C. Jack, “Statistical Metallurgical Model for Electromigration Failure in Aluminum Thin-Film Conductor”, J. Appl. Phys., 42, pp. 4343-4349, 1971.
[116] S. Vaidya, T.T. Sheng, and A.K. Sinha, “Linewidth Dependence Of Electromigration in Evaporated Al-0.5%Cu”, Appl. Phys. Lett., 36, pp. 464-466, 1980.
[117] E. Kinsbron, “A Model of the Width Dependence of Electromigration Lifetimes in Aluminum Thin-Film Stripes”, Appl. Phys. Lett., 36, pp. 968-970, 1980.
[118] C.V. Thompson and H. Kahn, “Effects of Microstructure on Interconnect And Via Reliability: Multimodal Failure Statistics”, J. Electron. Mater., 22, pp. 581-587, 1993.
[119] C.V. Thompson and B.D. Knowlton, ‘Designing Circuits and Processes to Optimize Performance and Reliability: Metallurgy Meets TCAD”, Microelectron. Relia., 36, pp. 1683-1690, 1996.
[120] J.D. Plummer, M.D. Deal, and P.B. Griffin, Silicon VLSI Technology: Fundamentals, Practice And Modeling, Prentice Hall, New Jersey, 2000.
[121] M.J. Attardo and R. Rosenberg, “Electromigration Damage in Aluminum Film Conductors”, J. Appl. Phys., 41, pp. 2381-2386, 1970.
[122] J.W. Eberhard and P.M. Horn, “Excess (1/f) Noise in Metals”, Phys. Rev. B, 18 , pp. 6681-6693, 1978.
[123] K.P. Rodbell, P.J. Ficalora, and R. Koch, “Effect of Hydrogen on Electromigration and 1/F Noise in Gold Films”, Appl. Phys. Lett., 50, pp. 1415-1416, 1987.
[124] J.G. Cottle and T.M. Chen, “Activation Energies Associated with Current Noise of Thin Metal Films”, J. Electron. Mater., 17, pp. 467-471, 1988.
[125] T.M. Chen, T.P. Djeu, and R.D. Moor, “Elecromigration and 1/f Noise of Aluminum Thin Films”, IRPS, pp. 87-92, 1985.
[126] B. Neri, C. Ciofi, and V. Dattilo, “Noise and Fluctuations in Submicrometric Al-Si Interconnect Lines”, IEEE Trans. Electron Devices, 44, pp. 1454-1459, 1997.
[127] F. Vollkommer, H.G. Bohn, K.-H. Robrock, “Internal Friction: a Fast Technique for Electromigration Failure Analysis”, IRPS, pp. 51-54, 1990.
[128] B.J. Root and T. Turner, “Wafer Level Electromigration Tests for Production Monitoring”, IRPS, pp. 100-107, 1985.
[129] R.W. Pasco and J.A. Schwarz, “Temperature-Ramp Resistance Analysis to Characterize Electromigration”, Solid-State Electron., 26, pp. 445-452, 1983.
[130] R.E. Jones and L.D. Smith, “A New Wafer-Level Isothermal Joule-Heated Electromigration Test for Rapid Testing of Integrated-Circuit Interconnect”, J. Appl. Phys., 61, pp. 4670-4678, 1987.
[131] C.C. Hong and D.L. Crook, “Breakdown Energy of Metal (BEM) — A New Technique for Monitoring Metallization Reliability at Wafer Level”, IRPS, pp, 108-114, 1985
[132] . W. Baerg, K. Wu, P. Davies, G. Dao, and D. Fraser, “The electric Resistance Ratio (RR) as a Thin Film Metal Monitor”, IRPS, pp. 119-123, 1990.
[133] H. Schafft and J.A. Lechner, “Statistics for Electromigration Testing”, IRPS, pp. 192-202, 1988.
[134] P.A. Tobias and D.C. Trindade, Applied Reliability, Van Nostrand Reinhold, New York, 1995.
[135] L.C. Wolstenholme, Reliability Modelling : A Statical Approach, Chapman & Hall, Boca Raton, 1999.
[136] ASTM Standards, “Standard Guide For Design of Flat, Straight-Line Test Structures for Detecting Metallization Open-Circuit of Resistance-Increase Failure Due to Electromigration”, Designation: F 1259 — 89.
[137] ASTM Standards, “Standard Test Method for Estimating Electromigration Median Time-To-Failure and Sigma of Integrated Circuit Metallizations”, Designation: F 1260 — 89.
[138] H.A. Schafft, T.C. Staton, J. mandel, and J.D. Shott, “Reproducibility of Electromigration Measurements”, IEEE Trans. Electron Devices, ED-34, pp. 673-681, 1987.
[139] H.A. Schafft, “Thermal Analysis of Electromigration Test Structures”, IEEE Trans. Electron Devices, ED-34, pp. 664-672, 1987.
[140] H.A. Schafft, and T.C. Grant, “Electromigration and the Current Density Dependence”, IRPS, pp. 93-99, 1985.
[141] EIA/JEDEC Standard, “Standard Method for Measuring and Using the Temperature Coefficient of Resistance to Determine the Temperature of A Metallization Line”, EIA/JEDEC33-A, Electronic Industries Association.
[142] EIA/JEDEC Standard, “Isothermal Electromigration Test Procedure”, EIA/JEDEC61, Electronic Industries Association.
[143] H. Toyoda, T. Kawanoue, M. Hasunma, H. Kaneko and M. Miyauchi, “Improvement in the Electromigration Lifetime Using Hyper-Textured Aluminum Formed on Amorphous Tantalum-Aluminum Underlayer”, IRPS, pp. 178-184, 1994.
[144] H.-J. Lee, K.-W. Kwon, C. Ryu and R. Sinclair, “Thermal stability of a Cu/Ta multilayer: an intriguing interfacial reaction”, Acta Mater., 47, pp. 3965-3975, 1999.
[145] H. Ono, T. Nakano and T. Ohta, “Diffusion Barrier Effects of Transition Metals for Cu/M/Si Multilayers (m= Cr, Ti, Nb, Mo, Ta, W)”, Appl. Phys. Lett., 64, pp. 1511-1513, 1994.
[146] K.-W. Kwon, C. Ryu and R. Sinclair, “Evidence of Heteroepitaxial Growth of Copper on Beta-Tantalum”, Appl. Phys. Lett., 71, pp. 3069-3071, 1997.
[147] R. Hoogeveen, M. Moske, H. Geisler and K. Samwer, “Texture and Phase Transformantion of Sputter-Deposited Metastable Ta Films and Ta/Cu Multilayers”, Thin Solid Films, 275, pp. 203-206, 1996.
[148] D.P. Tracy, D.B. Knorr and K.P. Rodbell, “Texture in Multilayer Metallization Structure”, J. Appl. Phys., 76, pp. 2671-2680, 1994.
[149] E.M. Zielinski, R.P. Vinci and J.C. Bravman, “Effects of Barrier Layer and Annealing on Abnormal Grain Growth in Copper Thin Films”, J. Appl. Phys., 76, pp. 4516-4523, 1994.
[150] T. Takewaki, T. Ohmi, and T. Nitta, “A Novel Self-Aligned Surface-Silicide Passivation Technology for Reliability Enhancement in Copper Interconnects”, 1995 Symposium on VLSI Technology Digest of Technical, pp. 31-32, 1995.
[151] S.H. Lee, and D. Kwon, “The Analysis of Thermal Stress Effect on Electromigration Failure Time in Al Alloy Thin-Film Interconnects”, Thin Solid Films, 341, pp. 136-139, 1999.
[152] T. Sakurai, “Closed-Form Expressions for Interconnction Delay, Coupling, and Crosstalk in VLSI’s”, IEEE Trans. Electron Devices, 40, pp. 118-124, 1993.
[153] M. Brillouët, “Multilevel Interconnection Technologies and Future Requirements for Logic Applications”, Microelectronic Eng., 37/38, pp. 5-13, 1997.
[154] T. Homma, “Low Dielectric Constant Materials and Methods for Interlayer Dielectric Films in Ultralarge-Scale Integrated Circuit Multilevel Interconnections”, Mater. Sci. & Eng., R23, pp. 243-285, 1998.
[155] S.P. Murarka, “Low dielectric constant materials for interlayer dielectric application”, Solid State Technpl., pp. 83-90, 1996.
[156] T.D. Sullivan, “Reliability Considerations for Copper Metallizations in ULSI Circuits”, Proc. Fifth International Workshop on Stress-Induced Phenomena in Metallization, pp. 39-50, 1999.
[157] R. Liu, C.-S. Pai and E. Martinez, “Interconnect Technology Trend for Microelectronics”, Solid-State Electron, 43, pp. 1003-1009, 1999.
[158] R.J. Gutmann, T.P. Chow, S. Lakshminarayanan, D.T. Price, J.M. Steigerwald, and S.P. Murarka, “Integration of Copper Multilevel Interconnects with Oxide and Polymer Interlevel Dielectrics”, Thin Solid Films, 270, pp. 472-479, 1995.
[159] M.C. Buncick and D.D. Denton, “Effects of Aging On Polyimide: A Study of Bulk and Interface Chemistry”, Solid-State Sensor and Actuator Workshop, pp. 102-106, 1990.
[160] A.P. Purdy, D. Godbey, and L. Buckley, “The Dissolution of Copper in Common Solvents Used for Dielectric Polymers”, Thin Solid Films, 308, pp. 486-489, 1997.
[161] K. Banerjee, A. Amerasekera, G. Dixit, and C. Hu, “The Effect of Interconnect Scaling and Low-K Dielectric on the Thermal Characteristics of the IC Metal”, IEDM, pp. 65-68, 1996.
[162] W.R. Hunter, “The Implications of Self-Consistent Current Density Design Guidelines Comprehending Electromigration and Joule Heating For Interconnect Technology Evolution”, IEDM, pp. 483-486, 1995.
[163] S. Ramaswamy, C. Duvvury, and S.-M. Kang, “EOS/ESD Reliability of Deep Sub-Micron NMOS Protection Devices”, Proc. IRPS, pp. 284-291, 1995.
[164] K. Banerjee, A. Amerasekera, and C. Hu, “Characterizationof VLSI Circuit Interconnect Heating and Failure Under ESD Conditions”, Proc. IRPS, pp. 237-245, 1996.
[165] J. Tao, N. W. Cheung, C. Hu, H. -K. Kang and S. S. Wong, “Electromigration Performance of Electroless Plated Copper/Pd-Silicide Metallization”, IEEE Electron Device Lett., 13, pp. 433-435, 1992.
[166] J. Tao, N. W. Cheung and C. Hu, “Electromigration Characteristics of Copper Interconnects”, IEEE Electron Device Lett., 14, pp. 249-251, 1993.
[167] J. Torres, J. L. Mermet, G. Crean, T. Gessner, A. Bertz, W. Hasse, M. Plotner, F. Binder and D. Save, “Copper-Based Metallization for ULSI Circuits”, Microelectron. Eng., 34, pp. 119-122, 1996.
[168] M. Markert, A. Bertz and T. Gessner, “Copper Dry Etching Technique for ULSI Interconnections”, Microelectron. Eng., 35, 99. 333-336, 1997.
[169] P. J. Ding, W. Wang, W. A. Lanford, S. Hymes and S. P. Muraka, “Thermal Annealing of Buried Al Barrier Layers to Passivate the Surface of Copper Films”, Appl. Phys. Lett., 65, pp. 1778-1780, 1994.
[170] W. A. Lanford, P. J. Ding, W. Wang, S. Hymes and S. P. Muraka, “Low-Temperature Passivation of Copper by Doping with Al or Mg”, Thin Solid Films, 262, pp. 234-241, 1995.
[171] S. P. Murarka, R. J. Gutmann, A. E. Kaloyeros and W. A. Lanford, “Advanced Multilayer Metallization Schemes with Copper as Interconnection Metal”, Thin Solid Films, 236, pp. 257-266, 1993.
[172] Y. L. Chin, B. S. Chiou and W. F. Wu, “Characterization of Cu/Al bilayer structure for copper interconnects”, Proc. VMIC, pp. 77-79, 1999.
[173] K. Abe, Y. Harada and H. Onoda, “Copper Crystallographic Texture Control in Cu/Refractory-Metal Layered Structure Interconnects”, Appl. Phys. Lett., 71, pp. 2782-2784, 1997.
[174] R. M. Rose, L. A. Shepard and J. Wulff, The Structure and Properties of Materials: Electronic Properties, John Wiley & Sons, New York, Vol. IV, 1964.
[175] S. Riedel, J. Röber and T. Geβner, “Electrical Properties of Copper Films Produced by MOCVD”, Microelectron. Eng., 33, pp. 165-172, 1997.
[176] A. F. Mayadas and M. Shatzkes, “Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces”, Phys. Rev., B 1, pp. 1382-1389, 1970.
[177] C.-K. Hu, K. P. Rodbell, T. D. Sullivan, K. Y. Lee and D. P. Bouldin, “Electromigration and Stress-Induced Voiding in Fine Al and Al-Alloy Thin-Films Lines”, IBM J. Res. Dev., 39, pp. 465-497, 1995.
[178] C.-K. Hu, M. B. Small and P. S. Ho, ”Electromigration in Al(Cu) two-level structure: effect of Cu and kinetics of damage formation”, J. Appl. Phys., 74, pp. 969-979, 1993.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top