跳到主要內容

臺灣博碩士論文加值系統

(54.172.135.8) 您好!臺灣時間:2022/01/18 15:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:龔文俠
研究生(外文):Weh-Hsia Kung
論文名稱:薄膜電晶體液晶顯示器驅動電路之設計
論文名稱(外文):Design On Driver Circuits for TFT-LCD Display
指導教授:柯明道柯明道引用關係
指導教授(外文):Ming-Dou Ker
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
中文關鍵詞:液晶顯示器驅動電路
外文關鍵詞:TFTdriver
相關次數:
  • 被引用被引用:5
  • 點閱點閱:1037
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
此篇論文著重於液晶顯示器的驅動電路設計,其驅動電路分為閘級驅動電路以及源級驅動電路,其中閘級驅動電路是由移位暫存器、電位轉換器和輸出緩衝器組成,而源級驅動電路是由移位暫存器、閂鎖器、電位轉換器、數位對類比轉換器和輸出緩衝器組成。
因為液晶之穿透率和偏壓電壓的關係,呈現一個非線性的關係,所以我們設計了一個擁有珈瑪修正功能的數位對類比轉換器去補償這效應,並且利用一0.5µm CMOS製程實現晶片。而在輸出緩衝級方面,我們設計了兩種不同架構的電路以達到驅動高負載的功能,分別是摺疊式以及加強slew-rate的放大器。另外,在降低功率消耗方面,我們設計了兩種擁有電荷共享的電路,half recycling可節省約二分之一動態功率耗損而triple charge recycling可以節省約三分之二的動態功率耗損。而以上四種電路則是在一0.25µm CMOS製程中之試製晶片。
最後,我們利用電晶體特性較好的低溫多晶矽薄膜電晶體將驅動電路直接整合在面板上,並且將它和傳統高壓CMOS製程做了些比較,並且設計了兩個新的圖素擁有數位記憶體的電路,如此在靜止畫面下可以利用數位記憶體來更新圖素的電壓並且中斷週邊電路的運作,以達到節省功率消耗的目的,並且以低溫多晶矽之model利用Smartspice的模擬驗證其功能的正確以及決定電晶體的尺寸。
In this thesis, we focus on the driver circuits for TFT-LCD display. The driver circuits are divided into two parts, gate driver and data driver. Gate driver is composed of shift register, level shifter, and output buffer. Data driver is composed of shift register, level shifter, latch, digital to analog converter, and output buffer.
Because the relationship of transparency versus voltage of liquid crystal is nonlinear, we design a digital to analog converter with gamma correction to compensate this effect. The circuit has been designed and fabricated in a 0.5µm CMOS process. In output buffer, we design two kinds of output buffer which can drive high loading. They are folded opamp and slew rate enhancement opamp. In addition, we design two circuits with charge recycling in order to reduce more power consumption. The circuit with half recycling can reduce about 1/2 dynamic power, and the circuits with triple charge recycling can reduce about 2/3 dynamic power. All of four circuits have been designed and fabricated in a 0.25µm CMOS process.
Finally, we discuss the concept of using high performance low temperature poly silicon thin film transistor (LTPS-TFT) to directly fabricate the driver circuits on the display panel. The comparison on device characteristics between LTPS-TFT and high-voltage CMOS is investigated. In addition, we proposed two new circuits for pixels with digital memory. In the case of still images, the voltage of pixel electrode is refreshed by digital memory and it can shut down the peripheral driver circuits in the same time. So, it can save more power. The device dimensions and circuit operation of these two new circuits have been designed and verified by Smartspice simulation.
CONTENTS
CHINESE ABSTRACT i
ENGLISH ABSTRACT ii
ACKNOWLEDGEMENTS iii
CONTENTS iv
TABLE CAPTION vii
FIGURE CAPTIONS viii
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Thesis Organization 2
CHAPTER 2 LIQUID CRYSTAL DISPLAY BACHGROUND 4
2.1 Liquid Crystal 4
2.2 Passive/Active Matrix LCD 5
2.3 TFT-LCD Driving Method
2.3.1 Pixel Structure of TFT-LCD 5
2.3.2 Inversion Driving 6
2.3.3 Direct Driving and AC Modulation Driving 6
2.4 Clock Feedthrough and Crosstalk 7
2.4.1 Clock Feedthrough 7
2.4.2 Crosstalk 9
2.4.3 Summary of Clock Feedthrough and Crosstalk 11
CHAPTER 3 SCAN DRIVER OF TFT-LCD 12
3.1 TFT-LCD Module and Operation Frequency 12
3.1.1 Block Diagram of TFT-LCD Module 12
3.1.2 Operation Frequencies of TFT-LCD 12
3.2 Scan Driver of TFT-LCD 13
3.2.1 Basic Component of Scan Driver 13
3.2.2 Other Design Consideration for Scan Driver 14
CHAPTER 4 DATA DRIVER OF TFT-LCD 16
4.1 Block Diagram of Data Driver 16
4.2 Gamma Correction 16
4.3 Digital to Analog Converter 17
4.3.1 Voltage Scaling DAC 17
4.3.2 Charge Scaling DAC 18
4.3.3 Time Scaling DAC 19
4.3.4 Combine 20
4.4 Output Buffer 20
4.4.1 Conventional Operational Amplifier 20
4.4.2 Slew Rate Enhancement 21
4.4.3 Folded Opamp with Class AB Output Stage 22
4.5 Low Power Design Consideration 22
4.5.1 Multi-Block Driving 23
4.5.2 Driving Voltage Reduction 23
4.5.3 Stepwise Driving 24
4.5.4 Charge Recycling 24
4.6 Simulation Results 25
CHAPTER 5 DRIVER CIRCUITS ON DISPLAY PANEL 28
5.1 Digital Memory on Glass 28
CHAPTER 6 CIRCUIT LAYOUT AND MEASUREMENT RESULTS 33
6.1 Layout Consideration 33
6.2 Measurements Results 33
6.3 High-Voltage CMOS versus LTPS-TFT 35
CHAPTER 7 CONCLUSIONS AND FUTURE WORKS 37
7.1 Conclusions 37
7.2 Future Works 38
REFERENCES 39
TABLE 42
FIGURES 47
VITA 100
REFERENCES
[1] E. Lueder, Liquid Crystal Display, John Wiley & Sons, Inc., 2001.
[2] K. Kusafuka, H. Shimizu, and S. Kimura, “Driving method for gate-delay compensation of TFT/LCD,” IBM J.Res. Develop, vol. 42, no. 3/4, MAY/JULY, pp. 459-466, 1998.
[3] S. Takahashi, S. Shibata, K. Gnodo, S. Yachi, Y. Ohno, T. Tobita, and H. Takasago, “Analysis of area-distributed crosstalk phenomena in large-area TFT-LCDs,” in SID’94 Dig., 1994, pp. 463-466.
[5] M. Stewart, T. Afentakis, G. Sarcona, and M. K. Hatalis, “Low-temperature flat-panel-display driver circuits in RTP crystallized polysilicon,” in SID’99 Dig., 1999, pp. 460-463.
[6] T. Higuchi, J. Hanari, N. Nakamura, K. Mametsuka, M. Watanabe, T. Murai, R. Watanabe, M. Seiki, R. Azuma, Y. Hori, K. Nakamura, Y. Aoki, H. Sakurai, T. Nakazono, and N. Harada, “Development of 15-inch UXGA low-temperature poly-Si TFT-LCD,” in SID’00 Dig., 2000, pp. 1121-1123.
[7] J. M. Rabaey, Digiital Integrated Circuits, Prentice Hall, Inc., 1996.
[8] Y. Kubota, H. Washio, K. Maeda, and M. Hijikigawa, “Low-voltage interface technology for CGS TFT-LCD with low power consumption,” in SID’99 Dig., 1999, pp. 1116-1119.
[9] H. Minamizaki, T. Taguchi, T. Itakura, S. Iwamoto, J. Sato, T. Syama, and I. Abe, “Low output offset, 8bit signal drivers for XGA/SVGA TFT-LCDs,” in Proc. Euro-Display’96, 1996, pp. 247-250.
[10] T. Itakura, “A high slew rate operational amplifier for an LCD driver IC,” IEICE Trans. Fundamentals, vol. E78-A, no. 2, pp. 191-195, 1995.
[11] T. Itakura and H. Minamizaki, “10mA quiescent current opamp design for LCD driver Ics,” IEICE Trans. Fundamentals, vol. E81-A, no. 2, pp. 230-236, 1998.
[12] P.-C Yu and T.-C. Wu, “A class-B output buffer for flat-panel-display column driver,” IEEE Journal of Solid-State Circuits, vol. 34, no. 1, pp. 116-119, 1999.
[13] J.-S. Kim, D.-K. Jeong, and G. Kim, “A multi-level multi-phase charge-recycling method for low-power AMLCD column drivers,” IEEE Journal of Solid-State Circuits, vol. 35, no. 1, pp. 74-84, 2000.
[14] S.-W. Lee, H.-J. Chung, J.-W. Lee, and C.-H. Han, “High performance, low-power integrated 8-bit digital data driver for poly-Si TFT-LCD’s,” in SID’99 Dig., 1999, pp. 76-79.
[15] Y.-C. Sung, B.-D. Choi, and O.-K. Kwon, “A low-power data driver for TFT-LCDs,” in SID’00 Dig., 2000, pp. 142-145.
[16] M. Azami, M. Osame, J. Koyama, H. Ohtani, and S. Yamazaki, “ A 2.6-in. DTV TFT-LCD with area-reduced integrated 8-bit digital data driver using 400-mobility CGS technology,” in SID’99 Dig., 1999, pp. 6-9.
[17] B.-D. Choi and O.-K. Kwon, “Stepwise data driving method and circuits for low-power TFT-LCDs,” IEEE Trans. on Consumer Electronics, vol. 46, pp. 1155-1160, 2000.
[18] M. J. Ammer, A highly integrates adiabatic energy recovery digital to analog converter, Massachusetts Institute of Technology, 1998.
[19] H. Kimura, T. Maeda, T. Tsunashima, T. Morita, H. Murata, S. Hirota, and H. Sato, “A 2.15 inch QCIF reflective color TFT-LCD with digital memory on glass,” in SID’01 Dig., 2001, pp. 268-271.
[20] H. Tokioka, M. Inoue, and T. Yamamoto, “Low power consumption TFT-LCD with dynamic memory embedded in pixels,” in SID’01 Dig., 2001, pp. 280-283.
[21] R. Yokoyama and M. Koga, “Data line driving circuit formed by A TFT based on polycrystalline silicon,” US patent #6,157,228, Sep. 2000.
[22] B.-H. Jung, “Liquid crystal display devices having redundant gate line driver circuits therein which can be selectively disabled,” US patent #5,815,129, Sep. 1998.
[23] N.-P. Tu, Y.-N. Ran, and C.-Y. Chang, “D/A converter with a gamma correction circuit,” US patent #5,877,717, Mar. 1999.
[24] H. Uchida, and K. Ohhashi, “Circuit for driving a liquid crystal display,” US patent #6,166,726, Dec. 2000.
[25] B.-D. Choi and O.-K. Kwon, “Stepwise data driving method and circuits for low-power TFT-LCDs,” IEEE Trans. on Consumer Electronics, vol. 46, pp. 1155-1160, 2000.
[26] Y. Aoki, T. Lizuka, S. Sagi, M. Karube, T. Tsunashima, S. Ishizawa, K. Ando, H. Sakurai, T. Ejiri, T. Nakazono, M. Kobayashi, H. Sato, N. Ibaraki, M. Sasaki, and H. Harada, “A 10.4-in. XGA low-temperature poly-Si TFT-LCD for mobile PC application,” in SID’99 Dig., 1999, pp. 179-179.
[27] K. M. Lim and M. Y. Sung, “Low noise digital data driver circuit integrated poly-Si TFT-LCD,” Microelectronics Journal, vol. 30, pp. 905-910, 1999.
[28] Y. Matsueda, S. Inoue, S. Takenaka, T. Ozawa, S. Fujikawa, T. Nakazawa, and H. Ohshima, “Low-temperature poly-Si TFT-LCD with integrated 6-bit digital data drivers,” in SID’96 Dig., 1996, pp. 21-24.
[29] M. Kimura, T. Fukami, K. Kumagawa, S. Asada, H. Wakemoto, and Y. Takubo, “A 23-in. UXGA-wide advanced IPS TFT-LCD with new driving method,” Displays, vol. 22, pp. 3-8, 2001.
[30] T. Shima, T. Itakura, S. Yamada, H. Minamizaki, and T. Ishioka, “Principle and applications of an autocharge-compensated sample and hold circuit,” IEEE Journal of Solid-State Circuits, vol. 30, no.8, pp. 906-912, 1995.
[31] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill Companies, Inc., 2000.
[32] D. Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc., 1997.
[33] Y. Nakajima, N. Goto, H. Kataoka, and T. Maekawa, “A 3.8inch QVGA reflective color LCD with integrated 3b DAC driver,” in ISSCC Dig. Tech. Papers, 2001, pp. 188-189.
[34] R. Hogervorst, J. P. Tero, R. G. H. Eschauzier, and J. H. Huiksing, “A compact power-efficient 3V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries,” IEEE Journal of Solid-State Circuits, vol. 29, no. 12, pp. 1505-1513, 1994.
[35] 384-channel 256-gradation source driver for color TFT LCDs, Texas Instruments Inc., USA, 2000.
[36] 384-output TFT-LCD source driver (compatible with 256-gray scales), NEC Inc., Japan, 1998.
[37] J. M. Rabaey, Digital Integrated Circuits, Prentice Hall, Inc., 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top