跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/28 20:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃敬群
研究生(外文):Ching-Chung, huang
論文名稱:根據空間-頻率域分析之紋理切割方法
論文名稱(外文):Textured Segmentation Based on
指導教授:王聖智王聖智引用關係
指導教授(外文):Sheng-Jyh, Wang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:126
中文關鍵詞:紋理切割空間頻率域震盪性特徵擷取特徵歸類
外文關鍵詞:texture segmentationspatial-frequency domainvarietyfeature extractionfeature classification
相關次數:
  • 被引用被引用:5
  • 點閱點閱:736
  • 評分評分:
  • 下載下載:112
  • 收藏至我的研究室書目清單書目收藏:2
在我們的論文中,我們採用了一套雙視窗的空間-頻率域分析方法,藉由此方法量測空間中不同區域的頻率資訊,而量測到的頻率資訊則當成紋理特徵用以處理紋理切割的問題.雙視窗空間-頻率分析法在空間和頻率域上各有一個觀察資訊用的視窗,空間視窗選取空間中分析的區域範圍,並決定了紋理資訊在頻率域上的解析度,頻率域視窗則挑選合適的頻段,藉由結合頻段內的資訊取得紋理特徵.此外,現有的空間-頻率域分析法一般會量得震盪劇烈的紋理特徵,以致產生不正確的切割結果.在本論文中,我們也針對紋理特徵產生震盪的原因加以分析,並經由一些處理以減少紋理特徵震盪的現象.

In this thesis, we present a new feature based texture segmentation scheme using a dual-window spatial-frequency domain approach. The dual-window spatial-frequency domain approach has two observing windows, one for spatial domain and the other one for frequency domain. The spatial domain window is used to choose the observed region and decide the resolution of texture information in the frequency domain. The frequency domain window is used to mix up observed frequency components to form texture features. In addition, the oscillating magnitude of texture features is also discussed in detail. Using texture features with large oscillation will make the segmentation more difficult. In the thesis, the causes of the unwanted oscillation is analysed systematically and some methods are proposed to suppress the oscillation.

目錄:
第 一 章 7
簡 介 7
第二章 12
紋理切割的技術 12
2.1特徵方式的紋理切割(FEATURE BASED SEGMENTATION) 12
2.1.1特徵擷取(feature extraction) 13
2.1.1.1直觀的紋理特徵描述 14
2.1.1.2由空間域資訊求取紋理特徵 15
2.1.1.3由頻率域資訊求取紋理特徵 18
2.1.2 特徵精簡(feature reduction) 23
2.1.3 歸類(clustering) 24
2.1.3.1 K-means Clustering (Square Error Clustering) 26
2.1.3.2 Mean Shift Algorithm 27
2.2模型方式的紋理切割(MODEL BASED SEGMENTATION) 30
第三章 33
應用賈柏過濾器處理紋理切割 33
3.1 賈柏濾波器和視覺模型的討論 33
3.2 賈柏濾波器(GABOR FILTERS) 33
3.2.1 賈柏濾波器公式 33
3.2.2 賈柏濾波器的特性 37
3.3 賈柏濾波器應用到紋理切割 39
3.3.1 監督式(supervised) 紋理切割 41
3.3.1.1 Dunn和Higgins的最佳賈柏濾波器設計 42
3.3.2 非監督式(unsupervised) 紋理切割 56
3.3.2.1 Jain[24]的紋理切割方法 56
3.3.2.2 Teuner[25]的紋理切割方法 60
第 四 章 63
根據空間-頻率域分析紋理切割 63
4-1空間-頻率域的紋理特徵擷取 64
4-1-1紋理切割的基本概念 64
4-1-2特徵影像的震盪現象 65
4-1-3空間-頻率域分析法量測的物理量 65
4-1-4雙視窗的空間-頻率域分析 72
4-1-5特徵影像的震盪現象 77
4-1-6特徵影像的前處理 92
4-1-7特徵影像的前處理-高斯平緩化(Gaussian smoothing) 94
4-1-8 雙視窗空間-頻率域分析的自由度 96
4-2 特徵精簡 99
4-2-1主成分分析法( Principal component analysis) 99
4-2-2無用的特徵資訊 101
4-3分群或切割 101
第 五 章 104
實驗結果與比較 104
第 六 章 126
結 論 與 展 望 126

[1] “Textural features corresponding to textural properties”
Amadasun, M.; King, R. Systems, Man and Cybernetics, IEEE Transactions on , Volume: 19 Issue: 5 , Sept.-Oct. 1989 Page(s): 1264 —1274
[2] “Optimal Gabor filters for texture segmentation”
Dunn, D.; Higgins, W.E. Image Processing, IEEE Transactions on , Volume: 4 Issue: 7 , July 1995 Page(s): 947 -964
[3] “Efficient gabor filter design for texture segmentation”
Weldon, Thomas P.; Higgins, William E.; Dunn, Dennis F. Pattern Recognition Volume: 29, Issue: 12, December, 1996, pp. 2005-2015:
[4] “Optimizing filter banks for supervised texture recognition”
Bresch, Manfred, Pattern Recognition Volume: 35, Issue: 4, April, 2002, pp. 783-790:
[5] “Multichannel texture analysis using localized spatial filters“
Bovik, A.C.; Clark, M.; Geisler, W.S. Pattern Analysis and Machine Intelligence, IEEE Transactions on , Volume: 12 Issue: 1 , Jan. 1990 Page(s): 55 —73
[6] “Texture segmentation using 2-D Gabor elementary functions”
Dunn, D.; Higgins, W.E.; Wakeley, J. Pattern Analysis and Machine Intelligence, IEEE Transactions on , Volume: 16 Issue: 2 , Feb. 1994 Page(s): 130 -149
[7] “Designing Gabor filters for optimal texture separability”
Clausi, David A.; Ed Jernigan, M. Pattern Recognition Volume: 33, Issue: 11, November, 2000, pp. 1835-1849
[8] “The perception of the visual world, Boston”
Gibson, J.J., MA, Houghton Mifflin, 1950.
[9 ]”Inability of humans to discriminate between visual textures that agree in second-order statistics — revisited,”
Julesz, B., E. N. Gilbert, L. A. Shepp, and H. L. Frisch, Perception, 2, pp.391-405,1973
[10]“Experiments in the visual perception of texture.”
Julesz, B., Scientific American, 232,pp. 34-43.1975
[11]“Textons, the elements of texture perception, and Their interactions,”
Julesz, B., Nature.290, pp.91-97.1981.
[12] “A Theory of preattentive texture discrimination based on first-order statistics of textons,”
Julesz, B., Biological Cybernetics,41,pp.131-138.1981.
[13]“preattentive texture discrimination with early vision mechanisms.”
Malik, J. and P. Perona, Journal of the Optical Society of America, Aeries A, 7,
pp.923-932,1990
[14]“ Spatial Frequency Channels and Perceptual Grouping in Texture Segregation.”
Beck, J., A. Sutter, and R. Ivry, Computer vision, Graphics, and Image processing, 37, pp.299-325
[15]“ Spatial —frequency selectivity of cells in macaque visual cortex,”
Devalois, R.L., D.G. Albrecht, and L,G. Thorell, vision research, 22, pp. 545-559, 1982
[16]“Moment based texture segmentation.”
Tuceryan, M. In Proceeding of 11th International Conference on Pattern Recognition, The Hague, Netherlands, August 1992.
[17] “A spatial filtering approach to texture analysis,”
Coggins, J.M. and A.k. Jain. Pattern Recognition Letters, 3,pp 195-203, 1985
[18] “Mean Shift, Mode Seeking, and Clustering.”
Yizong Cheng, IEEE Transactions, vol. 17, pp. 790-799, 1995.
[19] “Extended Mean Shift in Handwriting Clustering”
Toru Wakahara, and Kenji Ogura,
IEEE Proceedings, Pattern Recognition, Fourteenth international conference, vol 1, pp. 384-388, 1998.
[20]“Mean Shift Analysis and Applications.”
Dorin Comaniciu, and Peter Meer, Computer Vision, the proceedings of the seventh IEEE international conference, vol 2, pp. 1197-1203, 1999.
[21] “Real-Time Tracking of Non-Rigid Objects using Mean Shift.”
Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer, Computer Vision and Pattern Recognition, IEEE Proceedings, vol 2, pp. 142-149, 2000
[22] “Stochastic and deterministic networks for texture segmentation”
Manjunath, B.S.; Simchony, T.; Chellappa, R. Acoustics, Speech and Signal Processing [see also IEEE Transactions on Signal Processing], IEEE Transactions on , Volume: 38 Issue: 6 , June 1990
Page(s): 1039 -1049
[23] “Unsupervised texture segmentation using Gabor filters”
Jain, A.K.; Farrokhnia, F. Systems, Man and Cybernetics, 1990. Conference Proceedings., IEEE International Conference on , 1990 Page(s): 14 -19
[24] “Unsupervised texture segmentation of images using tuned matched Gabor filters”
Teuner, A.; Pichler, O.; Hosticka, B.J. Image Processing, IEEE Transactions on , Volume: 4 Issue: 6 , June 1995 .Page(s): 863 -870
[25] “The generalized Gabor scheme of image representation in biological and machine vision“
Porat, M.; Zeevi, Y.Y. Pattern Analysis and Machine Intelligence, IEEE Transactions on , Volume: 10 Issue: 4 , July 1988 Page(s): 452 -468
[26] “The Order of Computation for Finite Discrete Gabor Transforms”
Orr, R.S. Signal Processing, IEEE Transactions on , Volume: 41 Issue: 1 , January 1993 Page(s): 122
[27] “Texture Analysis,”
M. Tuceryan and A. K. Jain, In The Handbook of Pattern Recognition and Computer Vision (2nd Edition), by C. H. Chen, L. F. Pau, P. S. P. Wang (eds.), pp. 207-248, World Scientific Publishing Co., 1998. (Abstract) (Book Chapter)
[28] “Textures: A photographic Album for Artists and Designers.”
Brodatz, P., New York, Dover Publications,1966
[29] “Principles of communications”
Ziemer, Tranter, Fourth Edition.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top