|
Chapter 1 [1] Y. M. Chang, “Physical ceramics”, John Wiley & Sons, 1997. [2] J. F. Scott, “Ferroelectric Memories”, Springer Series, 2000. [3] C. Kittel, “Introduction to solid state physics”, 7th edition, John Wiley & Sons, 1996. [4] S. C. Sun and M. S. Tsai, “Effect of bottom electrode materials on the electrical and reliability characteristics of (Ba,Sr)TiO3 capacitors”, International Electron Device Meeting (IEDM), session 10-3, 1997. [5] M.S. Tsai, S. C. Sun and T. Y. Tseng, “Effect of bottom electrode materials on the electrical and reliability characteristics of (Ba,Sr)TiO3 capacitors”, IEEE Trans. Electron Devices, Vol. 46, NO. 9, pp. 1829-1839, 1999 [6] K. Koyama, T. Sakuma, S. Yamamichi, H. Watanabe, H. Aoki, S. Ohya, Y. Miyasaka, and T. Kikkawa, “A stacked capacitor with (Ba,Sr)TiO3 for 256 M DRAM”, in IEDM Tech. Digest, p. 823, 1991. [7] C. K. Campbell, “Surface acoustic wave devices for mobile and wireless communications”, Academic Press, 1998. [8] D. Galt, J. C. Price, J. A. Beall and T. E. Harvey, “Ferroelectric thin film characterization using superconducting microstrip resonator”, IEEE Tran. Appl. Superconductivity, vol. 5, pp.2575, 1995. [9] D. C. DeGroot, J. A. Beall, R. B. Marks and D. A. Rudman, “Microwave properties of voltage-tunable YBCO/STO coplanar waveguide transmission line”, IEEE Tran. Appl. Superconductivity, vol. 5, pp. 2272, 1995. [10] F. A. Miranda, G. Subramanyam, F. W. Van Keuls, Robert R. Romanofsky, J. D. Warner, and C. H. Mueller, “Design and development of ferroelectric tunable microwave components for ku - and ka-band satellite communication systems”, IEEE Tran. Microwave Theory and Tech., vol. 48, pp. 1181, 2000. [11] E. G. Erker, A. S. Nagra, Y. Liu, P. Periaswamy, T. R. Taylor, J. Speck, and R. A. York, “Monolithic Ka-band phase shifter using voltage tunable BaSrTiO3 parallel plate capacitors”, IEEE Microwave and Guided Wave Letters, vol. 10, pp. 10-12, 2000. [12] Y. Liu, A. S. Nagra, E. G. Erker, P. Periaswamy, T. R. Taylor, J. Speck, and R. A. York, “BaSrTiO3 interdigitated capacitors for distributed phase shifter applications”, IEEE Microwave and Guided Wave Letters, vol. 10, pp. 448-450, 2000. [13] G. Subramanyam, F. A. Miranda, F. Van Keuls, R. R. Romanofsky, C. L. Canedy, S. Aggarwal, T. Venkatesan, and R. Ramesh, “Performance of a K-band voltage-controlled lange coupler using a ferroelectric tunable microstrip configuration”, IEEE Microwave and Guided Wave Letters, vol. 10, pp. 136-138, 2000. [14] V. Sherman, K. Astafiev, N. Setter, A. Tagantsev, O. Vendik, I. Vendik, S. Hoffmann-Eifert, U. Böttger, and R. Waser, “Digital reflection-type phase shifter based on a ferroelectric planar capacitor”, IEEE Microwave and Wireless Components Letters, vol. 11, pp. 407-409, 2001. [15] S. S. Gevorgian, and E, L, Kollberg, “Do we really need ferroelectrics in paraelectric phase only in electrically controlled microwave devices?”, IEEE Tran. Microwave Theory and Tech., vol. 49, pp. 2117-2124, 2001. [16] M. F. Iskander, Z. Zhang, Z. Yun, R. S. Isom, M. G. Hawkins, R. Emrick, B. Bosco, J. Synowczynski, and B. Gersten, “New phase shifters and phased antenna array designs based on ferroelectric materials and CTS technologies”, IEEE Tran. Microwave Theory and Tech., vol. 49, pp. 2547-2553, 2001. [17] G. Subramanyam, F. V. Keuls and F. A. Miranda, “A novel K-band tunable microstrip band-pass filter using a thin film HTS/Ferroelectric/Dielectric Multilayer configuration”, IEEE MTT-s Digest, pp. 1011-1014, 1998. [18] D. M. Pozar, Microwave engineering, 2nd Edition, John Wiley & Sons, 1998. [19] K.C. Gupta, “Microstrip lines and slotlines”, second edition, Artech House, Boston, London. Chapter 7, 1998. [20] H. T. Lue, and T. Y. Tseng, IEEE Trans. On Ultrasonic, Ferroelectrics and Frequency Control, vol. 48, 1640 (2001). [21] S. M. Sze, Physics of semiconductor devices, 2nd edition, John Wiley & Sons, 1981. [22] International Technology Roadmap for Semiconductor (ITRS), SIA. [23] S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s”, IEEE Electron Device Letters, vol. 18, pp. 209-211, 1997. [24] J. H. Stathis and D. J. Dimaria, “Reliability projection for ultra thin oxides at low voltage”, International Electron Device Meeting (IEDM), session 7.2, 1998. [25] G. Timp, et al, “Low leakage, Ultra-thin gate oxide for high performance sub-100 nm nMOSFET’s”, International Electron Device Meeting (IEDM), session 9.8, 1997. [26] T. P. Ma, “Making silicon nitride film a viable gate dielectric”, IEEE Tran. Electron Devices, vol. 45, pp.680-690, 1998. [27] L-Å Ragnarsson, S. Guha, N. A. Bojarczuk, E. Cartier, M. V. Fischetti, K. Rim, and J. Karasinski, “Electrical characterization of Al2O3 n —channel MOSFETs with aluminum gates”, IEEE Electron Device Letters, vol. 2, pp. 490-492, 2001. [28] C. H. Lee, H. F. Luan, W. P. Bai, S. J. Lee, T. S. Jeon, Y. Senzaki, D. Robert and D. L. Kwong, “MOS characteristics of ultra thin rapid thermal CVD ZrO2 and Zr silicate gate dieelctrics”, International Electron Device Meeting (IEDM), session 2.3, 2000. [29] B. H. Lee, R. Choi, L. Kang, S. Gopalan, R. Nieh, K. Onishi, Y. Jeon, W. J. Qi, C. Kang and J. C .Lee, “Characteristics of TaN gate MOSFET with hafnium oxide (8Å-12Å)”, International Electron Device Meeting (IEDM), session 2.6, 2000. [30] H. F. Luan, S. J. Lee, C. H. Lee, S. C. Song, Y. L. Mao, Y. Senzaki, D. Roberts and D. L. Kwong, “High-quality Ta2O5 gate dielectrics with Tox <10 Å”, Session 6-2, International Electron Device Meeting (IEDM), 1999. [31] K. Eisenberg, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw, and C. D. Overgaard, “Field effect transistor with SrTiO3 gate dielectrics”, Appl. Phys. Lett., vol. 76, pp. 1324-1326, 2000. [32] Z. Yu, J. Ramdani, J. A. Curless, J. M. Finder, C. D. Overgaard, R. Droopad, K. W. Eisenbeiser, J. A. Hallmark, and W. J. Ooms, J. R. Conner and V. S. Kaushik, “Epitaxial perovskite thin films grown on silicon by molecular beam epitaxy”, J. Vac. Sci. Technol. B 18(3), pp. 1653-1657, 2000. [33] R. Droopad, Z. Yu, J. Ramdani, L. Hilt, J. Curless, C. Overgaard, J. L. Edwards, J. Finder, K. Eisenbeiser, J. Wang, V. Kaushik, B-Y Ngyuen, B. Ooms, “Epitaxial oxides on silicon grown by molecular beam epitaxy”, Journal of Crystal Growth, pp. 936-943, 2001. [34] A. Srivastava, V. Craciun, J. M. Howard, and R. K. Singh, “Enhanced electrical properties of Ba0.5Sr0.5TiO3 thin films grown by ultraviolet-assisted pulsed-laser deposition”, Appl. Phys. Lett., vol. 75, pp. 3002-3004, 1999. [35] R. Nieh, W. J. Qi, Y. Jeon, B. H. Lee, A. Lucas, L. Hang, J.c. Lee, M. Gardner and M Gilmer, “Nitrogen (N2) implantation to suppress growth of interfacial oxide in MOCVD BST and sputtered BST films”, Mat. Res. Soc. Symp. Proc. Vol. 567, pp.521-526, 1999. [36] G. D. Wilk, R. M. Wallace, and J.M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations”, Journal of Applied Physics, vol. 89, pp. 5243-5275, 2001. [37] M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, “Effective electron mobility in Si inversion layers in metal—oxide—semiconductor systems with a high- kinsulator: The role of remote phonon scattering”, Journal of Applied Physics, vol. 90, pp. 4587-4608, 2001. [38] I. Polishchuk, C. Hu, “Electron wavefunction penetration into gate dielectrics and interface scattering: an alternative to surface roughness scattering model”, VLSI Tech. Digest, 5A-4, 2001. [39] I. Polishchuk, P. Ranade, T. J King, and C. Hu, ” Dual work function metal gate CMOS technology using metal interdiffusion”, IEEE Electron Device Letters, vol. 22, pp. 444-446, 2001. [40] A. Shanware, J. McPherson, M. R. Visokay, J. J. Chambers, A. L. P. Rotondaro, H. Bu, M. J. Bevan, R. Khamankar, L. Colombo, “Reliability evaluation of HfSiON gate dielectric film with 12.8 Å SiO2 equivalent thickness”, International Electron Device Meeting (IEDM), section 6.6, 2001. [41] D. Barlage, R. Arghavani, G. Dewey, M. Doczy, B. Doyle, J. Kavalieros, A. Murthy, B. Roberds, P. Stokley and R. Chau “High-frequency response of 100nm integrated CMOS transistors with high-k gate dielectrics”, International Electron Device Meeting (IEDM), pp. 10.6.1-10.6.4, 2001. [42] B. Cheng, M. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. C. Stork, Z. Yu, P. M. Zeitzoff, and J. C. S. Woo, “The impact of high- k gate dielectrics and metal gate electrodes on sub-100 nm MOSFET’s”, IEEE Trans. Electron Devices, vol. 46, no. 7, pp. 1537 - 1544, 1999. [43] P. Pavan, R. Bez, P. Olivo and E. Zanoni, “Flash memory cells — an overview”, Proceed. IEEE, vol. 85, pp.1248-1271, 1997. [44] M. She, T. J. King, Chenming Hu, W. Zhu, Z. Luo, J. P. Han, and T. P. Ma, “JVD silicon nitride as tunnel dielectric in p-channel flash memory”, IEEE Electron Device Letters, vol. 23, pp. 91-93, 2002. [45] William D. Brown and Joe E. Brewer, Nonvolatile semiconductor memory technology, IEEE Press. [46] Koichiro Inovata, “Present and future of magnetic RAM technology”, IEICE Trans. On Electron., vol. E84-C, no. 6, pp. 740-746, 2001. [47] A. Sheikholeslami and P.G. Gilak, “A Survey of Circuit Innovations in Ferroelectric Random-Access Memories”, Proc. IEEE, vol. 88, pp. 667-689, 2000. [48] S. Lai and T. Lowrey, “OUM - A 180 nm Nonvolatile Memory Cell Element Technology For Stand Alone and Embedded Applications”, International Electron Device Meeting(IEDM), section 36-5, 2001. [49] Kinam Kim, “1T1C Technology for high-density FRAM”, 1st International Meeting on Ferroelectric Random Access Memories, November, pp.11-12, 2001. [50] D. Takashima, Y. Oowaki, and Y. Kunishima, “Gain cell block architecture for Giga-scale chain FeRAM”, VLSI on Circuits, pp. 103-104, 1999. [51] D. Takashima, “Overview and trend of chain FeRAM architecture”, IEICE Trans. On Electron., vol. E84-C, no. 6, pp. 747-756, 2001. [52] D. Takashima and I. Kunishima, “High-density chain ferroelectric random access memory (Chain FRAM)”, IEEE Journal of Solid State Circuits, vol. 33, no. 5, pp. 787-792, 1998. [53] D. Takashima, S. Shuto, I. Kunishima, H. Takenaka, Y. Oowaki, and S. Tanaka, “A sub-40-ns chain FRAM architecture with 7-ns cell-plate-line Drive”, IEEE Journal of Solid State Circuits, vol. 34, no. 11, pp. 1557-1563, 1999. [54] S. Y. Wu, IEEE Trans. Electron Devices ED-21, 499 (1974). [55] S. L. Miller and P. J. McWhorter, “Physics of the ferroelectric nonvolatile memory field effect transistor”, J. Appl. Phys., vol. 72, no. 12, pp. 5999 - 6010, 1992. [56] E. Tokumitsu, R. Nakamura, and H. Ishiwara, “Nonvolatile memory operation of metal - ferroelectric - insulator —semiconductor (MFIS) FET’s using PLZT/STO/Si(100) structures”, IEEE Electron Device Lett., vol. 18, no. 4, pp. 160 - 162, 1997. [57] K.H. Kim, “Metal — ferroelectric — semiconductor (MFS) FET’s using LiNbO3/Si (100) structures for nonvolatile memory application”, IEEE Electron Device Lett., vol. 19, no. 6, pp. 204-206, 1998. [58] Y. T. Kim, C. W. Lee, D. S. Shin and H. N. Lee, “Effect of insulator on memory window of metal — ferroelectric — semiconductor — field effect transistor (MEFISFET) non destructive readout memory devices”, Proc. IEEE International Symp. Appl. Ferroelect., pp. 35 — 38, 1998. [59] E. Tokumitsu, G. Fujii and H. Ishiwara, “Electrical properties of metal — ferroelectric — insulator — semiconductor (MFIS)- and metal — ferroelectric — metal - insulator — semiconductor (MFMIS)-FETs using ferroelectric SrBi2Ta2O9 film and SrTa2O6/SiON buffer layer”, Jpn. J. Appl. Phys., vol. 39, pp. 2125 - 2130, 2000. [60] E. Tokumitsu, K. Okamoto and H. Ishiwara, “Low voltage operation of non-volatile metal — ferroelectric —metal — insulator — semiconductor (MFMIS) — field — effect — transistors (FETs) using Pt/SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si structures”, Jpn. J. Appl. Phys., vol. 40, pp. 2917 - 2922, 2001. [61] F. Zhang, S. T. Hsu, Y. Ono, B. Ulrich, W. Zhuang, “Fabrication and characterization of sub-micron metal — ferroelectric — insulator — semiconductor field effect transistors with Pt/Pb5Ge3O11/ZrO2/Si structure”, Jpn. J. Appl. Phys., vol. 40, L 635 - 637, 2001. [62] M. Ullmann, H. Goebel, H. Hoenigschmid and T. Hander, “A BSIMS3v3 and DFIM based ferroelectric field effect transistor model”, IEICE Tran. Electron, vol. E 83-C, no. 8, pp. 1324 - 1330, 2000. [63] H. T. Lue, C. J. Wu and T. Y. Tseng, “Device modeling of ferroelectric memory field-effect transistor (FeMFET)”, revised by IEEE Tran. Electron Devices (ED). [64] H. T. Lue, C. J. Wu and T. Y. Tseng, “Device modeling of ferroelectric memory field-effect transistor (FeMFET) for the application of ferroelectric random access memory (FeRAM)“, submitted to IEEE Trans. Ultrasonics, Ferroelectric and Frequency Control (UFFC). [65] H. Ishiwara, T. Shimamura, E. Tokumistu, “Proposal of single-transistor-cell-type ferroelectric memory using SOI structures and experimental studies on the interference problems on the write operations”, Jpn. J. Appl. Phys., vol. 36, pp. 1655-1658, 1997. [66] S.M. Yoon and H. Ishiwara, “Memory operation of 1T2C-type ferroelectric memory cell with excellent data retention characteristics”, IEEE Tran. Electron Devices, vol. 48, no. 9, pp. 2002 - 2008, 2001. [67] S.M. Yoon and H. Ishiwara, “A novel FET-type ferroelectric memory with excellent data retention time”, International Electron Device Meeting(IEDM), section 13.6, 2000. [68] K. H Kim, J. P. Han, S. W. Jung, and T. P. Ma, “Ferroelectric RAM (FEDRAM) FET with metal/SrBi2Ta2O9/SiN/Si gate structure”, IEEE Electron Device Lett., vol. 23, no. 2, pp. 82 - 84, 2002. [69] T. P. Ma and J.-P. Han, “A ferroelectric dynamic random access memory,” U.S. Patent 6 067 244, 1999. [70] S.L.Lung, C.L.Liu, S.S. Chen, S.C.Lai, C. W. Tsai, T. T.Sheng, Tahui Wang, Sam Pan, T.B.Wu, Rich Liu, “Low temperature epitaxial growth of PZT on conductive perovskite LaNiO3 electrode for embedded capacitor-over-interconnect (COI) FeRAM application”, International Electron Device Meeting (IEDM), section 12.4, 2001. [71] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee and W. Jo, “Lanthanum — substituted bismuth titanate for use in non-volatile memories”, Nature, vol. 401, pp. 682-684, 1999. Chapter 2 [72] A. R. Forouhi and I. Bloomer, Phys. Rev. B, 38, 1865 (1988). [73] K.C. Gupta, “Microstrip lines and slotlines”, second edition, Artech House, Boston, London. Chapter 7, 1998. [74] G.F. Engen, and C.A. Hoer, “”Thru-Reflect-Line”: an improved technique for calibrating the dual six-port automatic network analyzer”, IEEE Trans. Microwave Theory and Tech., pp.987-993, vol. MTT-27, no12, Dec. 1979. [75] D. Rubin, “De-embedding mm-wave MICs with TRL”, Microwave Journal, pp.141-150, June 1990. Note: There are printed errors in Eqs. (17) and (21) in this paper.. Chapter 3 [76] D.C. DeGroot, J.A. Beall, R.B. Marks, and D.A. Rudman, “Microwave properties of voltage-tunable YBa2Cu3O7- /SrTiO3 coplanar waveguide transmission lines”, IEEE Trans. Appl. Superconductivity, vol 5, pp.2272-2275, 1995. [77] O.G. Vendik, E.F. Carlsson, P.K. Petrov, R.A. Chakalov, S.S. Gevorgian, and Z.G. Ivanov, “HTS/Ferroelectric CPW structures for voltage tunable phase shifters”, Microwave conference and exhibition, 27th European, pp.196-202. [78] H.D Wu and F.S. Barnes, “Doped Ba0.6Sr0.4TiO3 thin films for microwave device applications at room temperature”, Integrated Ferroelectrics, vol. 22, pp.291-305, 1998. [79] G. Subruamanyam, F.V. Keuls, and F.A. Miranda, “A K-band tunable microstrip bandpass filter using a thin film conductor/ferroelectric/dielectric multiplayer configuration”, IEEE, Microwave and Guided wave lett., pp.78-80, vol 8, no 2, Feb, 1998. [80] D. Galt, and J.C. Price, “Ferroelectric thin film characterzation using superconducting microstrip resonators”, IEEE Trans. Appl. Superconductivity, pp.2575-2578, vol. 5, June 1995. [81] K.C. Gupta, “Microstrip lines and slotlines”, second edition, Artech House, Boston, London. Chapter 7, 1998. [82] G.F. Engen, and C.A. Hoer, “”Thru-Reflect-Line”: an improved technique for calibrating the dual six-port automatic network analyzer”, IEEE Trans. Microwave Theory and Tech., pp.987-993, vol. MTT-27, no12, Dec. 1979. [83] D. Rubin, “De-embedding mm-wave MICs with TRL”, Microwave Journal, pp.141-150, June 1990. [84] E. Carlsson, and S. Gevorgian, “Conformal mapping of the field and charge distributions in multilayered substrate CPW’s”. IEEE Trans. Microwave Theory and Tech., pp.1544-1552, vol. 47, no. 8, Aug. 1999. [85] C.L. Holloway, and E.F. Kuester, “A quasi-closed form expression for the conductor loss of CPW lines, with an investigation of edge shape effects”. IEEE Trans. Microwave Theory and Tech., pp.2695-2701, vol. 43, no. 12, Dec. 1995. [86] Peter Kr. Petrov and Erik F. Carlsoon, “Improved SrTiO3 multilayers for microwave application: growth and properties”. Journal of Applied Physics, pp.3134-3140, vol 84, no. 6, September 1998. [87] A Kozyrev, V. Osadchy, Apavlov, L. Sengupta, “Application of ferroelectrics in phase shifter design”. IEEE MTT-S Digest, pp. 1355-1358, 2000. [88] J. R. Powell, A. Porch, F. Wellhöfer, M. J. Lancaster, T. Bollmeier, and B. Stritzker, “Laser ablated ferroelectric and superconducting thin films for microwave applications”. Superconducting Microwave Circuits, IEE Colloquium on , 1996 , pp 7/1 -7/5. Chapter 4 [89] G. D. Wilk, R. M. Wallace, and J.M. Anthony, Journal of Applied Physics, 89, 5243 (2001). [90] E. Tokumitsu, R. I. Nakamura and H. Ishiwara, IEEE Electron Device Letters, 18, 160 (1997). [91] D. A. Chang, P. Lin, and T. Y. Tseng, J. Apply. Phys, 78, 7103 (1995). [92] H.F. Luan, S.J. Lee, C.H. Lee, S.C. Song, Y.L. Mao, Y. Senzaki, D. Roberts, and D.L. Kwong, IEDM, Technical Digest, 141 (1999). [93] X. Guo, X. Wang, Z. Luo, T.P. Ma, and T. Tamagawa, IEDM, Technical Digest, 137 (1999). [94] K. Eisenberg, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw, and C. D. Overgaard, Applied Physics Letters, 76, 1324 (2000). [95] A. Srivastava, V. Craciun, J. M. Howard, and R. K. Singh, Applied Physics Letters, 75, 3002 (1999). [96] S. Jun, Y. S. Kim, J. Lee, and Y. W. Kim, Applied Physics Letters, 78, 2542 (2001). [97] E. Tokumitsu, G. Fujii, and H. Ishiwara, Jpn. J. Appl. Phys, 39, 2125 (2000). [98] S. Otani, M. Kimura and N. Sasaki, Appl. Phys. Lett. 63, 1889 (1993). [99] H. T. Lue, and T. Y. Tseng, IEEE Trans. On Ultrasonic, Ferroelectrics and Frequency Control. 48, 1640 (2001). [100] J. F. Scott, D. Galt, J. C. Price, J. A. Beall, R. H. Ono, C. A. P. Dearaujo, L. D. Mcmillan, Integrated Ferroelectrics, 6, 189 (1995). [101] J. F. Scott, Ferroelectric Memories, Springer, Berlin, 2000. Chapter 13. [102] F. A. Miranda, F. W. Van Keuls, R. R. Romanofsky, C. H. Mueller, J. D. Warner, Integrated Ferroelectrics, 34, 247 (2001). [103] G.. F. Engen, and C. A. Hoer, IEEE Trans. on Microwave Theory and Tech., MTT-27, 897 (1979). [104] A. R. Forouhi and I. Bloomer, Phys. Rev. B, 38, 1865 (1988). [105] E. Carlsson, and S. Gevorgian, IEEE Trans. on Microwave Theory and Tech., 47, 1544 (1999). [106] C. M. Jackson, T. Pham, Z. Zhang, A. Lee, C. Pettiete-Hall, International Microwave Symposium Digest, IEEE MTT-S, 3, 1439 (1995). [107] H. S. Gamble, B. M. Armstrong, S. J. N. Mitchell, Y. Wu, V. F. Fusco, and J. A. C. Stewart, IEEE Microwave and Guided Wave Letters, 9, 395 (1999). [108] Y. Wu, H. S. Gamble, B. M. Armstrong, V. F. Fusco, and J. A. C. Stewart, IEEE Microwave and Guided Wave Letters, 9, 10 (1999). [109] J. P. K. Glib, and C. A. Balanis, IEEE trans. on Microwave Theory and Techniques, 40, 2148 (1992). [110] E. S. Tony, and S. K. Chaudhuri, IEEE Trans. on Microwave Theory and Techniques, 47, 1760 (1999). [111] S. Chen, R. Vahldieck, and J. Huang, IEEE Trans. on Microwave Theory and Techniques, 44, 2487 (1996). [112] T. H. Lee, and S. S. Wong, Proceed. IEEE, 88, 1560 (2000). [113] V. Milanovic, M. Gaitan, E. D. Bowen, and M. E. Zaghloul, IEEE Microwave and Guided wave letters, 6, 380 (1996). [114] G. E. Ponchak, A. Margomenos, and L. P. B. Katehi, IEEE Tran. on Microwave Theory and Techniques, 49, 866 (2001). Chapter 5 [115] D. Barlage, R. Arghavani, G. Dewey, M. Doczy, B. Doyle, J. Kavalieros, A. Murthy, B. Roberds, P. Stokley and R. Chau “High-frequency response of 100nm integrated CMOS transistors with high-k gate dielectrics”, International Electron Device Meeting, pp. 10.6.1-10.6.4, 2001. [116] H. T. Lue, T. Y. Tseng, “Application of on-wafer TRL calibration on the measurement of microwave properties of Ba0.5Sr0.5TiO3 thin films”, IEEE Trans. Ultrasonics, Ferroelectric and Frequency Control, vol. 48, no. 6, pp, 1640-1647, 2001. [117] H. T. Lue, T. Y. Tseng and G.. W. Huang, “A method to characterize the dielectric and interfacial properties of metal — insulator — semiconductor structures by microwave measurement”, Journal of Appl. Phys., vol. 91, no. 8, pp. 5275-5282, 2002. [118] K. J. Yang and C. Hu, “MOS capacitance measurements for high-leakage thin dielectrics”, IEEE Trans. Electron Devices, vol. 46, pp. 1500-1501, 1999. [119] A. Nara, N. Yasuda, H. Satake, and A. Toriumi, “Applicability limits of the two-frequency capacitance measurement technique for the thickness extraction of ultrathin gate oxide”, IEEE Trans. Semiconductor Manufacturing, vol.15, no. 2, pp. 209-213, 2002. [120] K. Eisenberg, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw, and C. D. Overgaard, “Field effect transistor with SrTiO3 gate dielectrics”, Appl. Phys. Lett., vol. 76, pp. 1324-1326, 2000. [121] C. Y. Liu, H. T. Lue, and T. Y. Tseng, “Effects of nitridation of silicon and heat treatment on the dielectric properties of SrTiO3 gate dielectrics”, to be submitted to Appl. Phys. Lett. [122] Berkeley Device Group [Online]: www.device.eecs.berkeley.edu/qmcv/html Chapter 6 [123] A. Sheikholeslami and P.G. Gilak, “A Survey of Circuit Innovations in Ferroelectric Random-Access Memories”, Proc. IEEE, vol. 88, pp. 667-689, 2000. [124] S. L. Miller and P. J. McWhorter, “Physics of the ferroelectric nonvolatile memory field effect transistor”, J. Appl. Phys., vol. 72, no. 12, pp. 5999 - 6010, 1992. [125] E. Tokumitsu, R. Nakamura, and H. Ishiwara, “Nonvolatile memory operation of metal - ferroelectric - insulator —semiconductor (MFIS) FET’s using PLZT/STO/Si(100) structures”, IEEE Electron Device Lett., vol. 18, no. 4, pp. 160 - 162, 1997. [126] K.H. Kim, “Metal — ferroelectric — semiconductor (MFS) FET’s using LiNbO3/Si (100) structures for nonvolatile memory application”, IEEE Electron Device Lett., vol. 19, no. 6, pp. 204-206, 1998. [127] Y. T. Kim, C. W. Lee, D. S. Shin and H. N. Lee, “Effect of insulator on memory window of metal — ferroelectric — semiconductor — field effect transistor (MEFISFET) non destructive readout memory devices”, Proc. IEEE International Symp. Appl. Ferroelect., pp. 35 — 38, 1998. [128] E. Tokumitsu, G. Fujii and H. Ishiwara, “Electrical properties of metal — ferroelectric — insulator — semiconductor (MFIS)- and metal — ferroelectric — metal - insulator — semiconductor (MFMIS)-FETs using ferroelectric SrBi2Ta2O9 film and SrTa2O6/SiON buffer layer”, Jpn. J. Appl. Phys., vol. 39, pp. 2125 - 2130, 2000. [129] E. Tokumitsu, K. Okamoto and H. Ishiwara, “Low voltage operation of non-volatile metal — ferroelectric —metal — insulator — semiconductor (MFMIS) — field — effect — transistors (FETs) using Pt/SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si structures”, Jpn. J. Appl. Phys., vol. 40, pp. 2917 - 2922, 2001. [130] S.M. Yoon and H. Ishiwara, “Memory operation of 1T2C-type ferroelectric memory cell with excellent data retention characteristics”, IEEE Tran. Electron Devices, vol. 48, no. 9, pp. 2002 - 2008, 2001. [131] F. Zhang, S. T. Hsu, Y. Ono, B. Ulrich, W. Zhuang, “Fabrication and characterization of sub-micron metal — ferroelectric — insulator — semiconductor field effect transistors with Pt/Pb5Ge3O11/ZrO2/Si structure”, Jpn. J. Appl. Phys., vol. 40, L 635 - 637, 2001. [132] T. Y. Tseng, “Ferroelectric thin films for nonvolatile ferroelectric random access memory-a review”, Extended Abstracts of the First International Meeting on Ferroelectric Random Access Memories, pp. 20-21, 2001. [133] M. Ullmann, H. Goebel, H. Hoenigschmid and T. Hander, “A BSIMS3v3 and DFIM based ferroelectric field effect transistor model”, IEICE Tran. Electron, vol. E 83-C, no. 8, pp. 1324 - 1330, 2000. [134] S. L. Miller, R. D. Nasby, J. R. Schwank, M. S. Rodger, and P. V. Dressendorfer, “Device modeling of ferroelectric capacitors”, J. Appl. Phys., vol. 68, no. 12, pp. 6463 - 6471, 1990. [135] S. L. Miller, J. R. Schwank, R. D. Nasby, M. S. Rodger, “Modeling of ferroelectric capacitor switching with asymmetry nonperiodic input signals and arbitrary initial conditions”, J. Appl. Phys., vol. 70, no. 5, pp. 2849 - 2860, 1991. [136] S. M. Sze, Physics of Semiconductor Devices, 2nd edition, John Wiley, 1983. [137] Y. Taur and T. H. Ning, Fundamentals of modern VLSI devices, Cambridge University Press, 1998. [138] K. H Kim, J. P. Han, S. W. Jung, and T. P. Ma, “Ferroelectric RAM (FEDRAM) FET with metal/SrBi2Ta2O9/SiN/Si gate structure”, IEEE Electron Device Lett., vol. 23, no. 2, pp. 82 - 84, 2002. [139] K. Eisenberg, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw, and C. D. Overgaard, “Field effect transistor with SrTiO3 gate dielectrics”, Appl. Phys. Lett., vol. 76, pp. 1324-1326, 2000. [140] K. J. Choi, W. C. Shin, J. H. Yang, and S. G. Yoon, “Metal/ferroelectric/insulator/semiconductor structure of Pt/SrBi2Ta2O9/Si using YMnO3 as the buffer layer”, Appl. Phys. Lett., pp. 722 - 724, vol. 75, 1999. [141] T. Kanashima and M. Okuyama, “Analyses of high frequency capacitance —voltage of metal — ferroelectric — insulator — silicon structures”, Jpn. J. Appl. Phys., vol. 38, pp. 2044 - 2048, 1999. [142] B. Cheng, M. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. C. Stork, Z. Yu, P. M. Zeitzoff, and J. C. S. Woo, “The impact of high- k gate dielectrics and metal gate electrodes on sub-100 nm MOSFET’s”, IEEE Trans. Electron Devices, vol. 46, no. 7, pp. 1537 - 1544, 1999. [143] E. Tokumitsu, T. Isobe, T. Kijima and H. Ishiwara, “fabrication and characterization of metal — ferroelectric — metal — insulator — semiconductor (MFMIS) structures using ferroelectric (Bi, La)4Ti3O12 films”, Jpn. J. Appl. Phys., vol. 40, pp. 5576-5579, 2001. [144] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee and W. Jo, “Lanthanum — substituted bismuth titanate for use in non-volatile memories”, Nature, vol. 401, pp. 682-684, 1999. [145] P. Pavan, R. Bez, P. Olivo and E. Zanoni, “Flash memory cells — an overview”, Proceed. IEEE, vol. 85, pp.1248-1271, 1997. [146] B. Cheng, M. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. C. Stork, Z. Yu, P. M. Zeitzoff, and J. C. S. Woo, “The impact of high- k gate dielectrics and metal gate electrodes on sub-100 nm MOSFET’s”, IEEE Trans. Electron Devices, vol. 46, no. 7, pp. 1537 - 1544, 1999.
|