跳到主要內容

臺灣博碩士論文加值系統

(23.20.20.52) 您好!臺灣時間:2022/01/24 19:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇炯光
研究生(外文):Jiong-Guang Su
論文名稱:互補式金氧半元件之射頻特性研究
論文名稱(外文):An Investigation on CMOS Technology based Devices for RF Applications
指導教授:張俊彥王是琦
指導教授(外文):Chun-Yen ChangShyh-Chyi Wong
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:180
中文關鍵詞:射頻互補式金氧半場效電晶體截止頻率最大震盪頻率穩定度基底動態臨界電壓電晶體四塊網路分析法
外文關鍵詞:RFCMOScut off frequencymaximum oscillation frequencystabilityBDTMOS4BM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對互補式金氧半主動元件之射頻特性進行模型化與分析。以MOSFET元件的完整小訊號模型所推導的y-參數在本論文中被呈現出來。與已往的文獻比較,我們所推導出來的y-參數更為完整。而此一完整的y-參數模型將可應用於高頻系統的模擬,同時,亦可當作MOSFET元件的高頻參數萃取之用。此外,本論文提出一套分析MOSFET元件高頻行為的物理模型,稱之為four blocks method。在本模型中,我們觀察到閘極與汲極網路不僅具有功率消耗的特性,同時還有阻抗不匹配所造成的功率損耗。而其基底網路亦被發現為一回授網路,主動網路為放大的功能。
MOSFET的射頻特性如截止頻率、最大震盪頻率、功率增益與穩定度亦在本論文中詳加討論。雖然本論文採用0.13m、0.18m與0.35m的MOSFET元件進行分析,但對其高頻特性的研究更勝於技術的開發。本論文亦首度提出穩定度頻寬的概念,藉由此一概念,MOSFET元件的穩定度分析更為清楚。元件的佈局與高頻指標的關係亦被廣泛討論。藉由本論文的研究可發現,最佳化的佈局方式將使得0.13微米與0.18微米的MOSFET分別具有86GHz與65GHz的高截止頻率。同時,本論文亦研究了不同的佈局方式所呈現出的二階效應。
基於製程的相容性,低成本與高轉導特性的諸多考量,我們亦在本論文中提出基底動態臨界電壓MOSFET(B-DTMOS)的三種操作模式於射頻領域的應用。於我們的研究中,觀察到B-DTMOS在moderate與over-drive操作模式下具有高輸出能力,高頻寬良好的穩定度與高轉導對電流比的好處。此外,本論文並模型化B-DTMOS的表面電壓與通道電流。我們所推得的模型將可應用在以B-DTMOS為主的電路模擬中。

This dissertation presents original research on modeling and analyzing the performance of CMOS technology based devices for RF applications. Y-parameters of MOSFET with complete small-signal equivalent circuit were derived in order to implement in the RF circuit simulation. The developed analytic y-parameters of MOSFET are beneficial for parameter extraction, and also are useful for the simulation of large system. Further, small-signal equivalent circuit of MOSFET including intrinsic and extrinsic parts is divided into four blocks. They are, input, active, substrate and output networks. By the use of quasi-static approximation, the gate resistance reveals not only the power dissipation but also the power loss due to the impedance mismatch. Similarly, drain resistance also serves as the power dissipation and loss due to impedance mismatching. Additionally, thesubstrate network is found to be the in-series feedback network in the first time, and intrinsic part of MOSFET is the main active network for amplification.
RF properties of MOSFET were examined in detail by considering the cut-off frequency, maximum oscillation frequency, power gain and stability. Test structures of MOSFET in this dissertation include the technology nodes of 0.13um, 0.18um and 0.35um CMOS technologies. Even this thesis addresses the up-to-date technologies; the discussion is not restricted to the development of advance technologies. Instead, general analysis was performed. Bandwidth of RF stability of MOSFET is proposed to investigate the stability of MOSFET. It is found that the bandwidth of MOSFET to be potentially unstable is higher when the gate length is reduced. RF figures-of-merit of MOSFET with finger gate structure was discussed. By selecting optimal layout structure, 86GHz and 65GHz of cut-off frequencies of 0.13m and 0.18m nMOSFET can be achieved. Secondary effects induced by finger gate structure also examined in this thesis.
Bulk dynamic threshold voltage MOSFET (B-DTMOS) under various operation modes are proposed and analyzed because of its attractive benefits, that is, technology compatibility, cost efficiency and outstanding transconductance. The surface potential of B-DTMOS was derived according Poisson’s equation and charge sheet approximation. It is found that the surface potential of B-DTMOS kept minimal changes under the input bias below threshold voltage. While the input bias higher than threshold voltage, the surface potential decreased dramatically because of the shielding of channel charges. Channel current due to MOSFET action of B-DTMOS was derived according to the drift-diffusion equations, and then verified with two-dimensional device simulation. Excellent accuracy was obtained.
Additional to the static properties, high-frequency characteristics of B-DTMOS was studied. Exceed 100GHz of fT of B-DTMOS under moderate mode was extrapolated, and nearly 220GHz of fT of B-DTMOS under over-drive mode was extrapolated. Our results show that B-DTMOS exhibits high bandwidth by compensating its current gain. Besides, B-DTMOS exhibits high driving capability, better stability, and high transconductance to drain current ratio. Addressed results present that B-DTMOS is potential for the use of designing 10GHz upper applications, especially for the amplifier design.

Contents:
Chinese Abstract i
English Abstract ii
Acknowledgements v
Contents vi
Table Lists viii
Figure Captions ix
Chapter 1 Introduction 1
Chapter 2 y-parameter Analysis of Bulk MOSFET 5
2.1 y-parameter of intrinsic part of MOSFET 6
2.2 y-parameter analysis of MOSFET including intrinsic and extrinsic parts 10
2.3 Quasi-static approximation of small-signal model of MOSFET 23
2.4 The four blocks method (4BM) for RF MOSFET analysis 28
2.5 Summary 34
Chapter 3 Comprehensive Studies on the Bias dependence of RF Characteristics of Short-Channel MOSFET 35
3.1 Cut-off frequency of MOSFET 36
3.2 RF stability of MOSFET 46
3.3 Power gain of MOSFET 54
3.4 Maximum oscillation frequency of MOSFET 72
3.5 Summary 75
Chapter 4 Investigations on the RF Figure-Of-Merit of MOSFET with Compact Test Features 76
4.1 Impacts of extrinsic gate-to-bulk capacitance on RF FOM of MOSFET 78
4.2 Impacts of drain impedance on RF FOM of MOSFET 83
4.3 RF FOM of MOSFET with compact Finger gates 89
4.4 Summary 108
Chapter 5 Analysis and Modeling of Bulk Dynamic Threshold Voltage MOSFET for Static and Very-High-Frequency Applications 109
5.1 Principle of operation and Review of B-DTMOS 110
5.2 Band diagram, Surface potential and threshold voltage of B-DTMOS 113
5.3 Surface potential with non-zero VC of B-DTMOS 125
5.4 Drain current of B-DTMOS due to MOSFET action 129
5.5 Drain current of B-DTMOS due to Bipolar action 137
5.6 RF characteristics of B-DTMOS 146
5.7 Summary 158
Chapter 6 Conclusion 159
References 160
Vita 167
Publications List 168

[1]. H. M. Hsu, J. Y. Chang, J. G. Su, C. C. Tsai, S. C. Wong, C. W. Chen, K. R. Peng, S. P. Ma, C. H. Chen, T. H. Yeh, C. H. Lin, Y. C. Sun, C. Y. Chang, “A 0.18m foundry RF CMOS technology with 70GHz FT for single chip system solutions,” IEEE Symp. Microwave Theory and Techniques; 2001; pp. 1869-1872.
[2]. T. Skotnicki, M. Jurczak, J. Martins, M. Paoli, B. Tormen, R. Pantel, C. Hemandez, I. Campidelli, E. Josse, G. Ricci and J. Galvier, “Well-controlled selectively under-etched Si/SiGe gates for RF and high performance CMOS,” Symp. VLSI Tech. Dig., pp. 156-157, 2000.
[3]. Y. Hoshino, M. Morikawa, S. Kamohara, M. Kawakami, T. Fujioka, Y. Matsunaga, Y. Kusakari, S. Ikeda, I. Yoshida and S. Shimizu, “High performance scaled down Si LDMOSFET with thin gate bird’s beak technology for RF power amplifier,” Proc. IEDM-99, pp. 205-208, 1999.
[4]. P. R. de la Houssaye, C. E. Chang, B. Offord, G. Imthurn, R. Johnson, P. M. Asbeck, G. A. Garcia, I. Lagnado, “Microwave performance of optically fabricated T-gate thin film silicon-on-sapphire based MOSFET’s,” IEEE Electron Device Lett., vol. 16, pp.289-292, 1995.
[5]. T. Ohguro, H. Naruse, H. Sugaya, S. Nakamura, E. Morifuji, H. Kimijima, T. Yoshitomi, T. Morimoto, H. S. Momose, Y. Katsumata and H. Iwai, “High performance RF characteristics of raised gate/source/drain CMOS with Co salicide,” Symp. VLSI Tech. Dig., pp. 136-137, 1998.
[6]. T. Ohguro, R. Hasumi, T. Ishikawa, M. Nishigori, H. Oyamatsu and F. Matsuoka, “An epitaxial channel MOSFET for improving flicker noise under low supply voltage,” Symp. VLSI Tech. Dig., pp. 160-161, 2000.
[7]. T., Ohguro, H. Naruse, H. Sugaya, E. Morifuji, S. Nakamura, T. Yoshitomi, T. Morimoto, H. Kimijima, H. S. Momose, Y. Katsumata and H. Iwai, “An 0.18-μm CMOS for mixed digital and analog applications with zero-volt-Vth epitaxial-channel MOSFET’s,” IEEE Trans. Electron Devices, Vol. 46, No. 7, pp.1378-1383, July 1999.
[8]. D. C. Shaver, “Microwave operation of submicrometer channel-length silicon MOSFET’s,” IEEE Electron Device Lett., vol. 6, pp. 36-39, 1984.
[9]. N. Camillieri, J. Costas, D. Lovelace and D. Ngo, “Silicon MOSFET’s, the microwave device technology for the 90’s,” in IEEE Symp. Microwave Theory and Techniques, 1993, pp. 545-548.
[10]. R. R. J. Vanoppen, J. A. M. Geelen, and D. B. M. Klaassen, “The high-frequency analogue performance of MOSFET’s,” in Proc. IEDM, 1994, pp. 173-176.
[11]. S. P. Voinigescu, S. W. Tarasewicz, T. MacElwee, and J. Ilowski, “An assessment of the state-of-the art 0.5m bulk CMOS technology for RF applications,” in Proc. IEDM, 1995, pp. 721-724.
[12]. E. Morifuji, H. S. Momose, T. Ohguro, T. Yoshitomi, H. Kimijima, F. Matsuoka, M. Kinugawa, Y. Katsumata and H. Iwai, “Future perspective and scaling down roadmap for RF CMOS,” Symp. VLSI Tech. Dig., 1999, pp.163-164.
[13]. J. N. Burghartz, M. Hargrove, C. S. Webster, R. A. Groves, M. Keene, K. A. Jenjins, R. Logan, and E. Nowak, “RF potential of a 0.18-m CMOS logic device technology,” IEEE Trans. Electron Devices, Vol. 47, No. 4, pp.864-870, April 2000.
[14]. J. G. Su, S. C. Wong, C. Y. Chang, K. Y. Chiu, T. Y. Huang, C. T. Ou, C. H. Kao, C. J. Chao and, “New Insights on RF CMOS Stability Related to Bias, Scaling, and Temperature,” in IEEE Proc. Hong-Kong Electron Devices Meeting, 2000, pp. 40-43.
[15]. B. Razavi, “CMOS technology characterization for analog and RF design,” IEEE J. Solid-State Circuits, Vol. 34, No. 3, pp.268-276, March 1999.
[16]. F. Assaderaghi, D. Sinitsky, S. Parke, J. Bokor, P. K. Ko, and C. Hu, “A Dynamic Threshold Voltage MOSFET (DTMOS) for ultra-low voltage operation,” Proc. IEDM-94, pp. 809-812, 1994.
[17]. F. Assaderaghi, S. Parke, D. Sinitsky, J. Bokor, P. K. Ko, and C. Hu, “A Dynamic Threshold Voltage MOSFET (DTMOS) for very low voltage operation,” IEEE Electron Device Lett., Vol. 15, No. 12, pp. 510-512, Dec. 1994.
[18]. F. Assaderaghi, D. Sinitsky, S. A. Parke, J. Bokor, P. K. Ko, and C. Hu, “Dynamic Threshold-Voltage MOSFET (DTMOS) for ultra-low voltage VLSI,” IEEE Trans. Electron Devices, Vol. 44, No. 3, pp.414-422, March 1997.
[19]. S. Voldman, F. Assaderaghi, J. Mandelman, L. Hsu, and G. Shahidi, “Dynamic Threshold Body- and Gate-Coupled SOI ESD protection networks,” Proc. EOS/ESD Symp., pp. 210-220, 1997.
[20]. C. Wann, J. Harrington, R. Mih, S. Biesemans, K. Han, R. Dennard, O. Prigge, L. Chuan, R. Mahnkopf, and B. Chen,” CMOS with active well bias for low-power and RF/analog applications,” Symp. VLSI Tech. Dig., pp. 158-159, 2000.
[21]. J. Colinge, “An SOI voltage controlled bipolar-MOS device,” IEEE Trans. Electron Devices, Vol. ED-34, No. ?, pp.845-849, ??? 1987.
[22]. S. Verdonckt-Vandebroek, S. S. Wong, and P. K. Ko, “High gain lateral bipolar transistor,” Proc. IEDM-88, pp. 406-409, 1988.
[23]. S. Verdonckt-Vandebroek, S. S. Wong, J. C. S. Woo, and P. K. Ko, “High-gain lateral bipolar action in a MOSFET structure,” IEEE Trans. Electron Devices, Vol. ED-38, No. 11, pp.2487-2496, Nov. 1991.
[24]. S. Verdonckt-Vandebroek, Jaehee you, J. C. S. Woo, and S. S. Wong, “High-gain lateral p-n-p bipolar action in a p-MOSFET structure,” IEEE Electron Device Lett., Vol. 13, No. 6, pp. 312-313, June 1992.
[25]. S. A. Parke, C. Hu, and P. K. Ko, “ A high-performance lateral bipolar transistor fabricated on SIMOX,” IEEE Electron Device Lett., Vol. 14, No. 1, pp. 33-35, Jan. 1993.
[26]. S. A. Parke, C. Hu, and P. K. Ko, “ Bipolar-FET hybrid-mode operation of quarter-micronmeter SOI MOSFET’s,” IEEE Electron Device Lett., Vol. 14, No. 5, pp. 234-236, May 1993.
[27]. T. Tanaka, Y. Momiyama, and T. Sugii, “Fmax enhancement of Dynamic Threshold-Voltage MOSFET (DTMOS) under ultra-low supply voltage,” Proc. IEDM-97, pp. 423-426, 1997.
[28]. T. L. Hsu, D. D. L. Tang, and J. Gong, “Low-frequency noise properties of dynamic-threshold (DT) MOSFET’s,” IEEE Electron Device Lett., Vol. 20, No. 10, pp. 532-534, Oct. 1999.
[29]. V. Ferlet-Cavrois, A. Bracale, N. Fel, O. Musseau, C. Raynaud, O. Faynot, and J. L. Pelloie, “High frequency characterization of SOI dynamic threshold voltage MOS (DTMOS) transistors,” Proc. Int. SOI, pp. 24-25, 2000.
[30]. Y. Tsividis, Operation and modeling of the MOS transistor, McGraw-Hill Co., 2nd edition, Singapore, 1999.
[31]. S. H. M. Jen, C. C. Enz, D. R. Pehlke, M. Schröter, and B. J. Sheu, “Accurate modeling and parameter extraction for MOS transistors valid up to 10GHz,” IEEE Transactions on Electron Devices, vol. 46, No. 11, pp. 2217-2227, Nov. 1999.
[32]. C. C. Enz, and Y. Cheng, “MOS transistor modeling for RF IC design,” IEEE Transactions on Solid-State Circuits, Vol. 35, No.2, pp.186-201, Feb. 2000.
[33]. M. E. van Valkenburg, Network Analysis, Prentice-Hall Inc., 3rd edition, New Jersey, 1986.
[34]. G. Gonzalez, Microwave transistor amplifiers Analysis and Design, Prentice Hall Inc., 2nd edition, New Jersey, 1997.
[35]. D. Chin, “Executing system on a chip: requirements for a successful SOC implementation,” Proc. IEDM-98, p. 3, 1998.
[36]. G. D. Vendelin, A. M. Pavio, and U. L. Rohde, Microwave circuit design using linear and nonlinear techniques, John Wiley & sons, 1990.
[36a]. M. Chan, K. Hui, R. Neff, C. Hu, and P. K. Ko, “A relaxation time approach to model the non-quasi-static transient effects in MOSFET’s,” in Proc. IEDM, 1994, pp. 169-172.
[37]. D. Woods, “Reappraisal of the unconditional stability criteria for active 2-port networks in terms of S parameters,” IEEE Trans. Circuits and Systems, Vol. 23, No. 2, pp. 73, 1976.
[38]. M. L. Edwards, and J. H. Sinsky, “A new criterion for linear 2-port stability using a single geometrically derived parameter,” IEEE Trans. Microwave Theory and Techniques, Vol. 40 12, pp. 2303 —2311, Dec. 1992.
[39]. F. Güneş, and B. A. Çetiner, “Smith chart formulation of performance characterization for a microwave transistor,” IEE Proc.-Circuits Devices Syst., Vol. 145, No. 6, Dec. 1998.
[40]. G. D. Vendelin, “Circuit model for the GaAs MESFET valid to 12GHz,” Electronics Letters, Vol. 11, No.3, p.60, 6th, Feb. 1975.
[41]. R. Gharpurey, and T. R. Viswanathan, “Design of front-end RF circuits,” Southwest Symp. on Mixed-Signal Design, pp. 134 —139, 1999.
[42]. J. J. Ou, X. Jin, I. Ma, C. Hu, and P. R. Gray, “CMOS RF modeling for GHz communication IC’s,” Symp. VLSI Tech. Dig., p.94, 1998.
[43]. Y. Cheng, M. Schroter, C. Enz, M. Matloubian, and D. Pehlke, “RF modeling issues of deep-submicron MOSFETs for circuit design,” Proc. 5th International Conference on Solid-State and Integrated Circuit Technology, p. 416, 1998.
[44]. J. M. Rollett, “Stability and power-gain invariants of linear twoports,” IRE Trans. Circuit Theory, p.29, March 1962.
[45]. W. H. Lu, “Unilateral gain and stability criterion of active two-ports in terms of scattering parameters,” Proceedings of the IEEE, p.1617, Nov. 1966.
[46]. X. Jin, J. J. Ou, C. H. Chen, W. Liu, M. J. Deen, P. R. Gray, and C. Hu, “An effective gate resistance model for CMOS RF and noise modeling,” Proc. IEDM-98, p.961, 1998.
[47]. H. Johnson, “A high-frequency representation of the MOS transistor,” Proceedings of the IEEE, p.1970, Dec. 1966.
[48]. T. Manku, “Microwave CMOS --- Device physics and design,” IEEE J. Solid-State Circuits, Vol. 34, No.3, pp.277, March 1999.
[49]. S. J. Mason, “Power gain in feedback amplifiers,” IRE Transactions on Circuit Theory, Vol. CT-1, pp. 20-25, June 1954.
[50]. N. Zamdmer, A. Ray, J. O. Plouchart, L. Wagner, N. Fong, K. A. Jenkins, W. Jin, P. Smeys, I. Yang, G. Shahidi and F. Assaderaghi, “A 0.13-m SOI CMOS technology for low-power digital and RF applications,” Symp. VLSI Tech. Dig., 2001, pp.85-86.
[51]. P. H. Woerlee, M. J. Knitel, R. van Langevelde, D. B. M. Klaassen, L. F. Tiemeijer, A. J. Scholten, and T. A. Zegers-van Duijnhoven, “RF-CMOS performance trends,” IEEE Transactions on Electron Devices, vol. 48, pp.1776-1782, 2001.
[52]. T. E. Kolding, “Calculation of MOSFET Input Gate Impedance,” Technology Report of RISC, 1998.
[53]. B. Razavi, R. H. Yan, and K. F. Lee, "Impact of distributed gate resistance on the performance of MOS devices," IEEE Transactions on Circuits and Syst. I, vol. 41, Issue 11, pp. 750-754, Nov. 1994.
[54]. K. Joardar, “A simple approach to modeling cross-talk in integrated circuits,” IEEE Journal of Solid-State Circuits, vol. 29, No. 10, pp. 1212-1219, Oct. 1994.
[55]. K. Joardar, “Signal isolation in BiCMOS mixed mode integrated circuits,” in IEEE Proc. Bipolar/BiCMOS Circuits and Technology Meeting, 1995, pp. 178-181.
[56]. T. E. Kolding, “Test structure for universal estimation of MOSFET substrate effects at gigahertz frequencies,” in IEEE Proc. Bipolar/BiCMOS Circuits and Technology Meeting, 2000, pp. 106-111.
[57]. M. C. A. M. Koolen, J. A. M. Geelen and M. P. J. G. Versleijen, “An improved de-embedding technique for on-wafer high-frequency characterization,” in IEEE Proc. Bipolar/BiCMOS Circuits and Technology Meeting, 1991, pp. 188-191.
[58]. C. S. Kim, J. W. Park, H. K. Yu, and H. Cho, “Gate layout and bonding pad structure of RF n-MOSFET for low noise performance,” IEEE Electron Device Lett., vol. 21, No. 12, pp. 607-609, Dec. 2000.
[59]. Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, United Kingdom, 1998.
[60]. K. D. Kim, Y. K. Park, J. H. Lee, J. T. Kong, H. S. Kang, Y. W. Kim, and S. J. Kim, “ Three dimensional analysis of thermal degradation effects in FDSOI MOSFETs,” in IEEE Proc. Symp. on Quality Electronic Design, 2000, pp. 87-90.
[61]. N. Arora, MOSFET models for VLSI circuit simulation, Springer-Verlag, Wien, New York, 1993.
[62]. D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier,” IEEE J. Solid-State Circuits, Vol. 32, No. 5, pp.745-759, May 1997.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊