跳到主要內容

臺灣博碩士論文加值系統

(54.80.249.22) 您好!臺灣時間:2022/01/20 07:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏晶婷
研究生(外文):Ching-Ting Yen
論文名稱:鋯鈦酸鉛鐵電電容器之可靠度研究
論文名稱(外文):The Investigation of Reliability in PbZrTiO3 (PZT) Ferroelectric Capacitor
指導教授:陳振芳陳振芳引用關係
指導教授(外文):Jenn-Fang Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:63
中文關鍵詞:鐵電鋯鈦酸鉛可靠度電路模擬極化電荷
外文關鍵詞:ferroelectricPZTreliabilitymodelpolarization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:364
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
非揮發性鐵電記憶體由於具有低功率消耗、低寫入偏壓、高速寫入、及較佳的操作容忍度等特點,有可能取代現階段的主流記憶體,包括快閃式記憶體及可寫入可抹除記憶體(EEPROM),這些優點使得鐵電記憶體適用於呼叫器、行動電話,以及個人辨識卡(smart card)等應用中。即使如此,我們仍然非常關心鐵電電容器中的鐵電性及它可能擁有的可靠度問題。
本篇論文的主旨將在於探討鐵電電容器中的可靠度問題。除了一些熟知的問題如鐵電疲勞(fatigue)、鐵電印象(imprint)及老化(aging),我們特別著重於極化電荷鬆弛及極化偏壓所造成的可靠度問題。在研究極化電荷鬆弛對可辨識訊號的影響時,我們提出一種適用於電路模擬的新模型,在此模型中我們加入了一個電壓源來模擬極化電荷鬆弛效應,藉著這個方法,我們發現了極化電荷鬆弛在不同的架構中有不同的影響:在2T/2C架構中,極化電荷造成可辨識到的電壓大幅度降低;反之在1T/1C架構中,我們發現由電容值不平衡所影響的可辨識訊號,反而是在不考慮極化電荷鬆弛的情況下最小。
在研究極化偏壓所造成的效應方面,我們發現了在鋯鈦酸鉛(PZT)鐵電記憶體中,一種於低偏壓及高速操作時所造成的極化電荷喪失,這種極化電荷喪失的情形不僅會降低可辨識訊號的大小,也同時在鐵電記憶體中,特別是低偏壓操作的先進鐵電記憶體中,造成嚴重的可靠度的問題。我們發現這種極化電荷喪失是由於電極及鐵電材料中形成了蕭特基能障,此蕭特基能障在界面產生了能帶彎曲,進而使得極化速度變慢。在本研究中,為了消除並改善這種極化電荷喪失,我們也提出一種解決方法並加以證實。

Non-volatile ferroelectric random access memories (FeRAMs) have the potential to replace current state-of-the-art non-volatile memories such as flash and EEPROMs because of their lower power consumption, lower writing voltage, faster writing speed, and better endurance. Such attributes make this technology very attractive for applications such as pagers, cellular phones, and smart cards. However, the ferroelectric properties and their reliability are still of major interest.
The main theme of this work will focus on the reliability concerns in ferroelectric capacitors. Besides reviewing the most investigated subjects such as fatigue, imprint and aging, we intensively investigate the mechanisms for the polarization loss including polarization relaxation and polarized pulse effect. To evaluate the relaxation effect on bitline sense voltage, a SPICE compatible polarization relaxation model has been developed. A relaxation voltage source, responsible for polarization relaxation effects, is incorporated into the conventional ferro-capacitor model. The sense voltage in a 2T/2C cell is significantly reduced from the relaxation model. The relaxation effect on minimum sense voltage attributed to capacitance mismatch in a 1T/1C cell is also evaluated. As opposed to the result in the cell structure of 2T/2C, the worst case occurs when polarization is not relaxed at all.
Polarization charge loss in PZT ferroelectric memory under low-voltage and high-speed operation is observed. This effect significantly reduces the sensing margin and causes severe reliability issue in advanced ferroelectric memory, particularly for low-voltage applications. This polarization loss is attributed to slowing-down of polarization caused by band bending from Schottky potential at the electrode/ferroelectric interface. A solution to eliminate the polarization loss is proposed and verified.

Chinese Abstract i
English Abstract ii
Acknowledgements iii
Contents iv
Figure Captions vi
Chapter 1 Introduction 1
Chapter 2 Characterization and Reliability of the Ferroelectric Capacitor 3
2-1 Introduction 3
2.2 Principles of Ferroelectric Memory 3
2.2.1 Dielectric Polarization 3
2.2.2 Basic Memory-Cell Operation 5
2.3 Reliability Issues 6
2.3.1 Ferroelectric Fatigue 6
2.3.2 Ferroelectric Imprint 8
2.3.3 Ferroelectric Aging 9
2.3.4 Polarization Relaxation 10
2.3.5 Polarized Pulse Width Effect 11
Chapter 3 Polarization Relaxation Effects in Ferroelectric Memory 13
3.1 Introduction 13
3.2 Polarization Relaxation 13
3.3 Device Characterization and Measurement Setup 13
3.4 Logarithmic Time Dependence Modeling 14
3.5 Impact of Relaxation Effect on Sense Voltage 17
Chapter 4 Polarized Pulse Width Effect in PZT Ferroelectric Memory 21
4.1 Introduction 21
4.2 Polarization Loss in High-Speed Switching 21
4.3 Transient Polarization Current 21
4.4 Schottky Potential Induced Interface Band Bending 22
4.5 Solution for the Polarization Loss 23
Chapter 5 Conclusion 21
Reference 24

[1] K. Amanuma, T. Hase, and Y. Miyasaka, “Preparation and ferroelectric properties of SrBi/sub 2/Ta/sub 2/O/sub 9/ thin films.” Applied Physics Letters, vol. 66, pp.221-3, 1995.
[2] R. E. Jones, Jr., P. D. Maniar, R. Moazzami, P. Zurcher, J. Z. Witowski, Y. T. Lii, P. Chu, and S. J. Gillespie, “Ferroelectric non-volatile memories for low-voltage, low-power applications.” Thin Solid Films, vol. 270, pp. 584, 1995.
[3] S. Y. Lee, D. J. Jung, Y. J. Song, B. J. Koo, S. O. Park, H. J. Cho, S. J. Oh, D. S. Hwang, S. I. Lee, J. K. Lee, Y. S. Park, I. S. Jung, Kinam Kim, “A FRAM Technology Using 1T1C and Triple Metal Layers for High Performance and High Density FRAMs,” Symp. on VLSI Tech., pp. 141, 1999.
[4] M. Grossmann, D. Bolten, O. Lohse, U. Boerrger, R. Waser, W. Hartner, M. Kanstner, and G. Schindler, “Lifetime estimation due to imprint failure in ferroelectric SrBi/sub 2/Ta/sub 2/O/sub 9/ thin films.” Applied Physics Letters, vol. 76, pp. 363-5, 2000.
[5] E. L. Colla, D. V. Taylor, A. K. Taganstsev, and Setter, “Discrimination between bulk and interface scenarios for the suppression of the switchable polarization (fatigue) in Pb(Zr,Ti)O/sub 3/ thin films capacitors with Pt electrodes.” Applied Physics Letters, vol. 72, pp.2478-80, 1998.
[6] Y. Shimada, K. Nakao, A. Inoue, M. Azuma, Y. Uemoto, E. Fujii, and T. Otsuki, “Temperature effects on charge retention characteristics of integrated SrBi/sub 2/(Ta,Nb)/sub 2/O/sub 9/ capacitors.” Applied Physics Letters, vol. 71, pp. 2538, 1997.
[7] G. A. Smolenski, “Ferroelectrics and Related Materials,” Gordon and Breach Science Publishers, Co., 1984
[8] J. D. Kraus, Electromagnetics, McGraw-Hill, New York, 1984.
[9] J. F. Scott, Ferroelectric Memories, Springer Verlag, 1st edition, 2000.
[10] G. Shirane, F. Jona, and R. Pepinsky, “Some Aspects of Ferroelectricity,” Proceedings of the IRE, vol. 43, pp.1738, 1955
[11] A. Sheikholeslklami and P. G. Gulak, “A Survey of Circuit Innovations in Ferroelectric Random-Access Memories,” Proceedings of the IEEE, vol. 88, pp. 667, 2000.
[12] R. Ramesh, “Thin Film Ferroelectric materials and devices,” Kluwer Acadamic Publishers, Co., 1997
[13] M. Grossmann, D. Bolten, O. Lohse, U. Boerrger, R. Waser, and S. Tiedke,“ Correlation between switching and fatigue in PbZr0.3Ti0.7O3 thin films,” Applied Physics Letters, vol. 77, pp. 1894, 2000
[14] H. M. Duiker and P. D. Beale, “Grain-Size Effects in Ferroelectric Switching,” Phys. Rev. B, vol. 41, pp. 490, 1990.
[15] M. Grossmann, D. Bolten, O. Lohse, U. Boerrger, R. Waser, W. Hartner, M. Kanstner, and G. Schindler, “Lifetime estimation due to imprint failure in ferroelectric SrBi2Ta2)9 thin films,” Applied Physics Letters, vol. 76, pp. 363, 2000
[16] E. L. Colla, D. V. Taylor, A. K. Taganstsev, and Setter, “Discrimination between bulk and interface scenarios for the suppression of the switchable polarization (fatigue) in Pb(Zr,Ti)O3 thin films capacitors with Pt electrodes,” Applied Physics Letters, vol. 72, pp. 2478, 1998
[17] G. Arlt and U. Robels, “Aging and fatigue in bulk ferroelectric perovskite ceramics.” Integrated Ferroelectrics, vol. 3, pp. 343-9, 1993.
[18] M. Dawber and J. F. Scott, “A model for fatigue in ferroelectric perovskite thin films.” Applied Physics Letters, vol. 76, pp. 1060-2, 2000.
[19] X. Du and I. Wei-Chen, “Fatigue of Pb(Zr0.53Ti0.47)O3 ferroelectric thin films.” Journal of Applied Physics, vol. 83, pp. 7789, 1998.
[20] I. Stolichnov, A. Tagantsev, E. L. Colla, and N. Setter, “Cold-field-emission test of the fatigued state of Pb(Zr/sub x/Ti/sub 1-x/)O/sub 3/ films.” Applied Physics Letters, vol. 73, pp. 1361, 1998.
[21] A. Bratkovsky and A. Lenanyuk, Phys. Rev. Lett., vol. 84, pp. 3177, 2000.
[22] K. Amanuma, T. Hase, and Y. Miyasaka, “Preparation and Ferroelectric Properties of SrBi2Ta2O9 Thin Films,” Applied Physics Letters, vol. 66, pp. 221, 1995.
[23] A. Gruverman and M. Tanaka, “Polarization Retention in SrBi2Ta2O9 Thin Films Investigated at Nanoscale,” J. Appl. Phys., vol. 89, pp. 1836, 2001.
[24] D. J. Taylor, R. E. Jones, P. Zurcher, P. Chu, Y. T. Lii, B. Jiang, and S. J. Gillespie, “ Electrical Properties of SrBi2Ta2O9 Thin Films and their Temperature Dependence for Ferroelectric Nonvolatile Memory Applications,” Applied Physics Letters, vol. 68, pp. 2300, 1996.
[25] D. Jung, H. Kim, Y. Song, N. Jang, B. Koo, S. Lee, S. Park, Y, Park, K. Kim, “A Novel Ir/IrO2/Pt-PZT-Pt/IrO2/Ir Capacitor for A Highly Reliable Mega-Scale FRAM,” in IEDM Tech. Dig., pp. 801, 2000.
[26] M. Grossmann, D. Bolten, O. Lohse, U. Boerrger, R. Waser, W. Hartner, M. Kanstner, and G. Schindler, “Lifetime estimation due to imprint failure in ferroelectric SrBi2Ta2)9 thin films,” Applied Physics Letters, vol. 76, pp. 363, 2000.
[27] J. Lee, C. H. Choi, B. H. Park, T. W. Noh, and J. K. Lee, “Built-in voltages and asymmetric polarization switching in Pb(Zr,Ti)O3 thin film capacitors,” Applied Physics Letters, vol. 72, pp. 3380, 1998.
[28] W. L. Warren, D. Dimos, G. E. Pike, B. A. Tuttle, M. V. Raymond, R, Ramesh, and J. T. Evans, Jr., “Voltage shifts and imprint in ferroelectric capacitors,” Applied Physics Letters, vol. 67, pp. 866, 1995.
[29] Y. Shimada, K. Nakao, A. Inoue, M. Azuma, Y. Uemoto, E. Fujii, and T. Otsuki, “Temperature Effects on Charge Retention Characteristics of Integrated of SrBi2(Ta,Nb) 2O9 capacitors,” Appl. Phys. Lett. 71, 2538, (1997)
[30] A. Gregory, R. zucca, S. Q. Wang, M. Brassington, N. Abt,“ Thermal Stability of Ferroelectric Memories,” Inter. Reliability. Phys. Symp. (IRPS), pp. 91, 1992.
[31] R. Moazzami, N. Abt, Y. Nissian-Cohen, W. H. Shepherd, M. P. Brassington, and C. Hu, “Impact of polarization relaxation on ferroelectric memory performance,” Symp. on VLSI Tech. pp. 61, 1991.
[32] R. R. Mehta, B. D. Silverman, and J. T. Jacobs, “Depolarization field in thin ferroelectric films,” J. Appl. Phys., vol. 44, pp. 3379-3385, 1973.
[33] J. M. Benedetto, R. A. Moore, and F. B. Mclean, “Effects of Operating Conditions on the Fast-decay Component of the Retained Polarization in Lead Zirconate Titanate Thin Films,” J. Appl. Phys., vol. 75, pp. 460, 1994.
[34] B. Yang, T. K. Song, S. Aggarwal, R. Ramesh, “Low Voltage Performance of Pb(Zr,Ti)O3 Capacitors through Donor Doping,” Applied Physics Letters, vol. 71, pp. 3578, 1997.
[35] A. Sheikholeslami, P. G. Gulak, H. Takauchi, H. Tamura, H. Yoshioka, and T. Tamura, “A Pulse-Based, Parallel-Element Macromodel for Ferroelectric Capacitors” IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, pp. 784, 2000.
[36] J. M. Benedetto, R. A. Moore, and F. B. Mclean, “Fast decay component of the remanent polarization in thin-film PZT capacitors.” Integrated Ferroelectrics, vol. 1, pp. 195-204, 1992.
[37] J. M. Benedetto, R. A. Moore, and F. B. Mclean, “Effects of operating conditions on the fast-decay component of the retained polarization in lead zirconate titanate thin films. “, Journal of Applied Physics, vol. 75, pp. 460-6, 1994.
[38] S. Tanaka, R. Ogiwara, Y. Itog, T. Miyakawa, Y. Takeuchi, S. Doumae, H. Takenaka, and H. Kamata, “FRAM cell design with high immunity to fatigue and imprint for 0.5 mu m 3 V 1T1C 1 Mbit FRAM.” IEEE Transactions on Electron Devices, vol.47, no.4, pp. 781-8, 2000.
[39] O. Lohse, M. Grossmann, U. Boettger, and D. Bolten, “ Relaxation Mechanism of Ferroelectric Switching in Pb(Zr,Ti)O3 Thin Films,” J. Appl. Phys., vol. 89, pp. 2332, 2001.
[40] K. Tagantsev, A. L. Kholkin, E. L. Colla, K. G. Brooks, and N Setter, “Effect of Ferroelectric Polarization on Current Response of PZT Thin Films,” Integr. Ferroelectr, vol. 10, pp. 189, 1995.
[41] Y. Fukuda, K. Numata, K. Aoki, and A. Nishimura, “Origin of Dielectric Relaxation Observed for Ba0.5Sr0.5TiO3 Thin Film Capacitor,” Jpn. J. Appl. Phys., vol. 10, pp. 189, 1995.
[42] S. L. Miller, R. D. Nasby, J. R. Schwank, M. S. Rodgers, and P. V. Dressendorfer, “Device Modeling of Ferroelectric Capacitors,” J. Appl. Phys., vol. 68, pp. 6463, 1990.
[43] C. Sudhama, A. C. Campbell, P. D. Maniar, R. E. Jones, R. Moazzami, C. J. Mogab, and J. C. Lee, “A Model for Electrical Conduction in Metal-Ferroelectric-Metal Thin-Film Capacitors,” J. Appl. Phys., vol. 75, pp. 1014, 1994.
[44] F. K. Chai, J. R. Brews, and R. D. Schrimpf, “Laminations of the Uniform Effect Field Approximation due to Doping of Ferroelectric Thin-Film Capacitors,” J. Appl. Phys., vol. 78, pp. 4766, 1995.
[45] C. H. Lin, P. A. Firddle, C. H. Ma, A. Daga, and H. Chen, “Effects of Thickness on the Electrical Properties of Metalorganic Chemical Vapor Deposited Pb(Zr,Ti)O3 (25-100nm) Thin Films on LaNiO3 Buffered Si,” J. Appl. Phys., vol. 90, pp. 1509, 2001.
[46] C. S. Huang, B. T. Lee, H. J. Cho, K. H. Lee, C. S. Kang, H. Hideki, S. I. Lee, and M. Y. Lee, “A Positive Temperature Coefficient of Resistivity Effect from a Paraelectric Pt/ Ba0.5,Sr0.5TiO3/IrO2,” Applied Physics Letters, vol. 71, pp. 371, 1997.
[47] S. L. Lung, C. L. Liu, S. S. Chen, S. C. Lai, C. W. Tsai, T. T. Sheng, Tahui Wang, S. Pan, T. B. Wu and R. Liu, “Low Temperature Epitaxial Growth of PZT on Conductive Perovskite LaNiO3 Electrode for Embedded Capacitor-Over-Interconnect (COI) FeRAM Application,” in IEDM Tech. Dig., pp. 275, 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王和雄,「國家賠償法請求權人之研究」,法令月刊,三十五卷七期。
2. 王和雄,「行政不作為之違法性(下)」,收錄於法學叢刊第一四九期,一九九三年一月。
3. 王和雄,「行政不作為之違法性(上)」收錄於法學叢刊第一四八期,一九九二年十月。
4. 蔡進雄(1998),「教師組織承諾研究之回顧與前瞻」,教育資料文摘,第41卷,第2期,頁133-141。
5. 鄭伯壎(1990),「組織文化價值觀之數量衡鑑」,中華心理學刊,第32卷,頁31-49。
6. 鄧子正(1999),「公設消防組織之形成與分化探討-以我國消防組織為例」,警學叢刊,30卷2期。
7. 梅可望(1997),「建立我國消防文化與倫理」演講稿,消防月刊,86年2月,頁34-36。
8. 李湧清(2000),「優質警察文化的建立與策略」,警學叢刊,31卷1期。
9. 白崇亮(1986),「組織承諾研究:理論與實證」,管理評論,第一期,頁31-50。
10. 李震山,「論行政法上比例原則與裁量原則之關係」,警政學報,二十三期。
11. 李惠宗,「論行政不作為之國家賠償責任-臺中地方法院八十六年度重國字第三號(衛爾康事件)判決與大法官釋字第四六九號解釋評釋」收錄於臺灣本土法學雜誌一一期,二○○○年六月。
12. 沈政雄,「對於依法申請案件之行政不作為與國家賠償」收錄於萬國法律,一九九九年八月。
13. 馬維麟,「公務員侵權責任與國家賠償責任-最高法院歷年來判決之檢討與分析」收錄於法學叢刊一六○期,一九九五年十月。
14. 陳國義,「民法因果關係之理論、概念及舉證責任在德國環境損害賠償事件的適用及其轉變」收錄於「法學叢刊」第一六○期,一九九五年一○月。
15. 梁永興,「大法官會議釋字第四六九號解釋以後對公務員可能造成的衝擊」收錄於萬國法律,一九九九年八月。