跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/29 22:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林明正
研究生(外文):Ming-Cheng Lin
論文名稱:砷化鎵850nm面射型雷射之製程技術與特性研究
論文名稱(外文):Study of Fabrication Techniques and Characterization of 850 nm GaAs VCSELs
指導教授:王興宗楊賜麟
指導教授(外文):S. C. WangSu-Lin Yang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:58
中文關鍵詞:面射型雷射
外文關鍵詞:VCSEL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在探討砷化鎵面射型雷射之製程技術與特性研究,其中包括氫離子佈植850 nm 面射型雷射的製程技術研究、元件尺寸對特性的影響以及佈植能量對電流侷限的影響。我們已建立氫離子佈植電流侷限面射型雷射之製程技術,包括曝光條件、顯影時間、電極材料、氫離子佈植能量,並成功地製作出面射型雷射。在探討雷射特性方面,我們針對氫離子佈植能量為200keV,佈植劑量為1×1015 cm-2所製作之雷射作不同尺寸的金屬接觸以及出光孔徑大小變化,探討其對雷射電阻和臨界電流的影響,我們發現在相同的金屬接觸尺寸下,孔徑愈小的雷射有愈大的電阻及愈小的臨界電流。其中金屬接觸為300×300µm2,孔徑為8µm的雷射有最小的臨界電流5.5mA,電阻為42.2Ω。至於金屬接觸的尺寸對電阻的影響並不是很大,以孔徑為10µm為例,金屬接觸尺寸從200×200到500×500µm2,電阻在35〜36Ω之間。
我們並探討佈植能量對電流侷限的影響,在相同佈植劑量1×1015 cm-2下,改變四種佈植能量200、250、300、350keV。我們發現佈植能量為250keV時,孔徑為10µm,金屬接觸尺寸為300×300µm2的雷射有最低的臨界電流2.7mA和最高的光強度輸出2.38mW。

The thesis mainly focuses on the study of fabrication techniques and characterization of GaAs VCSELs; the content includes the study of fabrication techniques of 850 nm proton implanted VCSELs, the influence of laser dimensions on characteristics, and the influence of implantation energy on current confinement. We had established the fabrication techniques of current-confined proton implanted VCSELs including exposure condition, development time, metal contact, and proton implantation energy; as a result, a lot of VCSELs were successfully fabricated. In discussing laser characteristics, the dependence of resistance and threshold current on dimensions of contact pad and aperture was studied. We found that for a given contact pad size, with a dose of 1×1015 cm-2 200 keV protons, smaller aperture led to higher resistance and lower threshold current. With a 300×300 µm2 contact pad and an 8 µm aperture, the VCSEL achieved the lowest threshold current of 5.5 mA and the resistance was 42.2 Ω. However the pad size didn’t influence the resistance severely. In the case of 10 µm aperture, the contact pad size from 200×200 to 500×500 µm2 led to the resistance from 35 to 36 Ω.
With a dose of 1×1015 cm-2 protons, four kinds of energy of 200, 250, 300, and 350 keV were employed to study the dependence of current confinement on implantation energy. We found that for the VCSEL with a 10 µm aperture and a 300×300 µm2, the implantation energy of 250 keV gave rise to the lowest threshold current of 2.7 mA and the maximum output power of 2.38 mW.

Chinese Abstract……………………………………………………………………..…i
English Abstract……………………………………………………………………….ii
Acknowledgement……………………………………………………………………iii
Contents…………………………………………………………………………....….iv
Captions of Figures………..………………..………………………………………...vi
Captions of Tables…………………………………………………………………...viii
Chapter 1 Introduction…………………………………………………………1
1.1 Why Semiconductor Lasers?...................................................................................1
1.2 Why VCSELs?.........................................................................................................2
Chapter 2 Fundamental Theories………………………………………….…8
2.1 Semiconductor Lasers……………………………………………………………..8
2.1.1 Threshold Condition………………………………………………………10
2.1.2 Mode Spacing……………………………………………………………..12
2.1.3 Output Power Characteristics……………………………………………..14
2.1.4 Current Density………………………………………………...…………15
2.2 Vertical-Cavity Surface-Emitting Lasers…………………………………………17
2.2.1 Distributed Bragg Reflectors……………………………………………...18
2.2.2 Typical Current Confinement VCSEL Structures…………………...……23
2.2.2.1 Proton Implanted VCSELs……………….………………………..24
2.2.2.2 Selectively Oxidized VCSELs…………………………………….25
2.3 Ion Range and Distribution Theory………………………………………………25
2.4 Secondary Ion Mass Spectrometry……………………………………………….27
Chapter 3 Experimental Details……………………………………………...29
3.1 Implanted VCSEL Epitaxial Structure……………………………………….......29
3.2 Dimensions of VCSELs………………………………………………………….32
3.3 Laser Fabrication Procedure and TechniqueS……………………………………33
3.3.1 Surface Treatment..……………………………………...…..……………34
3.3.2 Pattern Definition and Metallization…………………………………...…34
3.3.3 Proton Implantation Energy……………………………………...……….36
3.4 Characteristics Measurement………………………………………………..…...37
3.4.1 Setup of Measurement Equipment……………………………………..…37
3.4.2 SIMS measurement………………………………………….……………38
Chapter 4 Results and Discussion…………………………..…………….…40
4.1 L-I-V Characteristics…………………………...…………………………………40
4.1.1 Aperture Size Dependence of L-I-V Characteristics……….……………...40
4.1.2 Pad Size Dependence of L-I-V Characteristics…………….……………...42
4.2 Emission Spectrum……………………………………………….………………44
4.3 Near Field Pattern………………………………………………………………...48
4.4 Study of Various Implantation Conditions…………………………………...…..48
Chapter 5 Conclusion…………………………………..………………………54
References………………………………………………………………………....56

References
1. H. Kressel and J. K. Butler, “Semiconductor Laser and Heterojunction LEDs,” Academic Press, New York, 1977.
2. W. W. Chow, S. W. Koch, and M. Sargent III, “Semiconductor-Laser Physics,” Springer-Verlag, Berlin Heidelberg, 1994.
3. G. P. Agrawal and N. K. Dutta, “Semiconductor Lasers,” Van Nostrand Reinhold, New York, 1993.
4. H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys., vol. 18, pp. 2329—2330, Dec. 1979.
5. K. Iga, S. Kinoshita, and F. Koyama, “Microcavity GaAlAs/GaAs surface emitting laser with Ith = 6 mA,” Electron. Lett., vol. 23, no.3, pp. 134—136, Jan. 1987.
6. F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave lasing characteristics of GaAs vertical cavity surface emitting laser,” Appl. Phys. Lett., vol. 55, no. 3, pp. 221—222, July 1989.
7. J. L. Jewell, S. L. McCall, A. Scherer, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion and 30-ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett., vol. 55, pp. 22—24, July 1989.
8. K. D. Choquette, R. P. Schneider, M. H. Crawford, K. M. Geib, and J. J. Figiel, “Continuous wave operation of 640—660 nm selectively oxidized AlGaInP vertical cavity lasers,” Electron. Lett., vol. 31, pp. 1145—1146, July 1995
9. K. Iga, “Possibility of Green/Blue/UV surface emitting lasers,” in Int. Symp. Blue Laser Light Emitting Diodes, Mar. 1996, Th-11, pp. 263—266.
10. T. Someya, K. Tachibana, Y. Arakawa, J. Lee, and T. Kamiya, “Lasing oscillation in InGaN vertical cavity surface emitting lasers,” in 16th Int. Semiconductor Laser Conf., 1998, PD-1, pp. 1—2.
11. D. B. Young, J. W. Scott, F. H. Peters, B. J. Thibeault, S. W. Corzine, M. G. Peters, S. L. Lee, and L. A. Coldren, “High-power temperature-insensitive gain-offset InGaAs/GaAs vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 5, pp. 129—132, Feb. 1993.
12. D. I. Basic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron., vol. 28, pp. 514—524, Feb. 1992.
13. S. W. Corzine, R. H. Yan, and L. A. Coldren, “A tanh substitution technique for the analysis of abrupt and graded interface multilayer dielectric stacks,” IEEE J. Quantum Electron., vol. 27, pp. 2086—2090, Sep. 1991.
14. W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron., vol. 33, pp. 1810—1824, Nov. 1997.
15. K. Tai, R. J. Fischer, K. W. Wang, S. N. G. Chu, and A. Y. Cho, “Use of implant isolation for fabrication of vertical-cavity surface-emitting laser diodes,” Electron. Lett., vol. 25, pp. 1644—1645, Nov. 1989.
16. M. Orenstein, A. V. Lehman, C. J. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. L. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett., vol. 56, pp. 2384—2386, Jun. 1990.
17. Y. H. Lee, B. Tell, K. f. Brown-Goebeler, and J. L. Jewell, “Top-surface-emitting GaAs four-quantum-well lasers emitting at 0.85 µm,” Electron. Lett., vol. 26, pp. 710—711, May 1990.
18. K. L. Lear, R. P. Schneider, K. D. Choquette, S. P. Kilcoyne, J. J. Figiel, and J. C. Zolper, “Vertical cavity surface emitting lasers with 21% efficiency by metalorganic vapor phase epitaxy,” IEEE Photon. Technol. Lett., vol. 6, pp. 1053—1055, Sep. 1994.
19. B. Tell, Y. H. Lee, K. F. Brown-Goebeler, J. L. Jewell, R. E. Leibenguth, M. T. Asom, G. Livescu, L. Luther, and V. D. Mattera, “High-power cw vertical-cavity top surface-emitting GaAs quantum well lasers,” Appl. Phys. Lett., vol. 57, pp. 1855—1857, Oct. 1990.
20. J. A. Lehman, R. A. morgan, M. K. Hibbs-Brenner, D. Carlson, “High frequency modulation characteristics of hybrid dielectric/AlGaAs mirror singlemode VCSELs,” Electron. Lett., vol. 31, pp. 1251—1252, Jul. 1995.
21. G. Shtengel, H. Temkin, P. Brusenbach, T. Uchida, M. Kim, C. Parsons, W. E. Quinn, and S. E. Swirhun, “High-speed vertical-cavity surface emitting laser,” IEEE Photon. Technol. Lett., vol. 5, pp. 1359—1361, Dec. 1995.
22. R. A. Morgan, M. K. Hibbs-Brenner, R. A. Walerson, J. A. Lehman, T. M. Marta, S. Bounnak, E. L. Kalweit, T. Akinwande, and J. C. Nohava, “Producible GaAs-based top-surface emitting lasers with record performance,” Electron. Lett., vol. 31, pp. 462—463, Mar. 1995.
23. W. Jiang, C. Gaw, P. Kiely, B. Lawrence, M. Lebby, and P. R. Claisse, “Effect of proton implantation on the degradation of GaAs/AlGaAs vertical cavity surface emitting lasers” Electron. Lett., vol. 33, pp. 137—139, Jan. 1997.
24. K. D. Choquette, R. P. Schneider, Jr., K. L. Lear, and K. M. Geib, “Low threshold voltage vertical-cavity lasers fabricated by selective oxidation,” Electron. Lett., vol. 30, pp. 2043—2044, Nov. 1994
25. K. D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and R. Hull, “Fabrication and performance of selectively oxidized vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol. 7, pp. 1237—1239, 1995
26. K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective oxidation of AlGaAs alloys,” J. Special Topics Quantum Electron., vol. 3, pp. 916—926, 1997.
27. R. S. Burton, and T. E. Schlesinger, “Wet thermal oxidation of AlxGa1-xAs compounds,” J. Appl. Phys., vol. 76, pp. 5503—5507, Nov. 1994.
28. H. Nickel, “A detailed experimental study of the wet oxidation kinetics of AlxGa1-xAs layers,” J. Appl. Phys., vol. 78, pp. 5201—5203, Oct. 1995.
29. M. Ochiai, G. E. Giudice, H. Temkin, J. W. Scott, and T. M. Cockerill, “Kinetics of thermal oxidation of AlAs in water vapor,” Appl. Phys. Lett., vol. 68, pp. 1898—1900, Apr. 1996.
30. H. Ryssel and I. Ruge, “Ion Implantation,” John Wiley & Sons, 1986.
31. J. F. Ziegler, “Handbook of ion implantation technology,” Elsevier Science Publishers B. V., 1992.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文