跳到主要內容

臺灣博碩士論文加值系統

(75.101.211.110) 您好!臺灣時間:2022/01/26 13:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊雅婷
研究生(外文):Yang Ya Ting
論文名稱:利用X光繞射及光激發螢光光譜探討應力對單層氮化銦鎵/氮化鎵量子井之影響
論文名稱(外文):Study of Strain-Affected Single-layer InGaN Quantum Wells in GaN using X-ray Diffraction and Photoluminescence Spectra
指導教授:陳文雄陳文雄引用關係洪雪行
指導教授(外文):Wen-Hsiung ChenHseuh- Hsing Hung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:54
中文關鍵詞:X光繞射光激發螢光光譜應力氮化銦鎵
外文關鍵詞:XRDPLstrainInGaN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,藉由X光繞射(X-ray Diffraction, XRD)及光激發螢光光譜(Photoluminescence, PL)討論單層氮化銦鎵/氮化鎵量子井之應力變化。樣品利用有機金屬氣相沈積磊晶方法,製備氮化銦鎵厚度由 4.9 nm 變化至300 nm,且在個別的樣品銦組成皆約為13 %。
光激發螢光光譜分別在室溫及 20K 進行量測。隨著氮化銦鎵厚度增加,和氮化銦鎵相關的發光頻譜位置往短波長處偏移,且由X光繞射結果觀察到氮化銦鎵的繞射峰往低角度處偏移,此變化趨勢與光激發螢光光譜一致。利用銦LIII 能量進行近邊緣X光吸收光譜來決定樣品內的銦組成及檢驗厚度效應對X光吸收性質之影響。但由於氮化銦鎵厚度太薄且激發光源能量太弱及範圍過短,因此厚度效應並未得知。
利用已知的氮化銦鎵相關的發光頻譜位置討論當氮化銦鎵厚度增加時由應力誘導產生的壓電場。推算出隨著量子井厚度從 4.9 nm增加到 300 nm, 應力產生的壓電場由 1.1 MV/cm 減小到 8.9 x10-3 MV/cm。並透過已知壓電場大小,適當的計算並討論樣品之物理性質。我們相信氮化銦鎵量子井之應力分佈會影響氮化銦鎵/氮化鎵光電元件的光學性質。

Photoluminescence (PL) and X-ray Diffraction (XRD) Spectra of strained single layer InGaN films sandwiched by GaN were performed to study the stain variation in layers of different thickness. The film thickness of InxGa1-xN grown with MOCVD varied from 4.9 nm to 300 nm and the In concentration was about 13 molar percentages (x = 0.13).
Photoluminescence measured at ambient temperature and 20 K both indicated a non-linear blue shift of the indium related PL peak position in increasing layer thickness. The XRD results exhibited shifts of diffraction peaks towards lower Bragg angles in the direction of layer thickness increasing, consistent with the PL results. Near-edge x-ray absorption spectroscopy (XANES) was performed with In-LIII energies to determine the In concentration and to examine the thickness effect of the films on x-ray absorption properties. The thinness of the In incorporated layer and the weakness and short energy range of the excitation source, however, derailed this attempt.
The strain induced piezoelectric field was seen to relax with increasing InGaN layer thickness in a scale that rendered unto us the opportunity to quantify the effect. The induced electric field strength at room temperature was estimated from known the experimental data, which varied from 1.1 MV/cm for the 4.9 nm sample to 8.9 x 10-3 MV/cm for the 300 nm film, respectively. Upon the application of the found piezoelectric field, some mechanical properties pertinent to this quantity were also calculated and discussed. We believe the strain relaxation problem in InGaN quantum wells has to be accounted for in any serious InGaN / GaN light-emitting components as it affects the optical properties of these devices.

Contents
摘 要 i
Abstract iii
Acknowledgements v
Contents vi
List of Tables viii
List of Figures ix
Chapter 1 Introduction 1
Chapter 2 Theoretical Background 3
2.1 X-ray Diffraction, Layer Thickness and Composition 3
2.2 Photoluminescence (PL) and Micro-cavity Interference 7
2.3 The General Theory of X-ray Absorption 10
2.4 GaN Structure 14
Chapter 3 Experimental Details 18
3.1 Sample Preparation 18
3.2 XRD Detection System 19
3.3 PL Detection System 19
3.4 XANES Detection System 20
3.5 Data Analysis and Simulation Software 21
Chapter 4 Results and Discussion 27
4.1 Structural Characterization Variations of InGaN of Different Thickness 27
4.1.1 XRD results 27
4.1.2 Bede RADS simulation 28
4.2 PL Spectra of InGaN of Different Thickness 29
4.3 Strain-induced Piezoelectric Field and Stress 31
4.4 XANES results of InGaN of Different Thickness 35
Chapter 5 Conclusion 50
Reference 52

[1] S. Nakamura, M.Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, Jpn. J. Appl. Phys. 35, L74 (1996)
[2] S. Nakamura and G. Fosal, The Blue Laser Diodes (Spring, Berlin, 1997)
[3] P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, Appl. Phys. Lett. 71, 569 (1997)
[4] S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 70, 2822 (1997)
[5] K. P. O’Donnell, R. W. Martin, and P. G. Middleton, Phys. Rev. Lett. 82, 237 (1999)
[6] S. Chichibu, T. Sota, K. Wada, and S. Nakamura, J. Vac. Sci. Technol. B 16, 2204 (1998)
[7] Lun Dai, Bei Zhang, J. Y. Lin, and H. X. Jiang, J. Appl. Phys. 89, 4951 (2001)
[8] P. Riblet, H. Hirayama, A. Kinoshita, A. Hirata, T. Sugano, and Y. Aoyagi, Appl. Phys. Lett. 75, 2241 (1999)
[9] M. A. Khan, S. Kirshnankutty, R. A. Skogman, J. N. Kuznia, D. T. Olson, and T. George, Appl. Phys. Lett. 65, 520 (1994)
[10] T. Takeuchi et al., Appl. Phys. Lett. 73, 1691 (1998)
[11] S. F. Chichibu, T. Sota, K. Wada, S. P . DenBaars, S. Nakamura, MRS Interent J. Nitride Semicond. Res. 4S1, G2.7 (1999)
[12] L. H. Peng, C. W. chuang, L. H. Lou, Appl. Phys. Lett, 74, 795 (1999)
[13] E. Berkowicz et al., Phys. Rev. B 61, 10994 (2000)
[14] M. S. Minsky, S. B. Fleischer, A. C. Abare, J. E. Bowers, E. L. Hu, S. Keller, and S. P. DEnBaars. Appl. Phys. Lett, 72, 1066 (1999)
[15] P. A. Grodo wski, C. J. Eiting, J. Park, B. S. S helton, D. J. H. Lambert and R. D. Dupuis, Appl. Phys. Lett. 71, 1537 (1997)
[16] B.D.Cullity, Elements of X-RAY DIFFRACTION, (1987).
[17] Joseph H. Simmons and Kelly S. Potter: Optical Materials.
[18] A.H.Kitai: Solid State Luminescence.
[19] Klaus D. Mielenz: Optical Radiation Measurements, Vol 3.
[20] A. Billeb et al., Appl. Phys. Lett. 70, 2790 (1997)
[21] O. Ambbcher, M. Arzberger, D. Brunner, H. Angerer, R. F. Freudenberg, N. Esser, T. Wethkamp, K. Wilmers, W. Richter, and M. Stutzmann, Mat. Res. Soc. 2, art 22 (1997)
[22] D. C. Koningsberger and R. Prins, “X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES”, John Willy & Sons, 1987.
[23] J. Stöhr, NEXAFS spectroscopy (Springer, Berlin, 1992).
[24] S. Strite, M. E. Lin, and H. Morkoc, Thin Solid Films 231, 197 (1993).
[25] R. F. Davis. Physica B 185, 1 (1993).
[26] P. C. Tseng, C. C. Chen, T. E. Dann, S.C. Chung, and C. T. Chen, J. Synch. Rad. 5, 723 (1998).
[27] H. Hsu, M. T. Tang, J. Synch. Rad. 5, 896 (1998).
[28] H. Teisseyre, Jpn. Appl. Phys. 76, 2429 (1997)
[29] S. Nakamura, K. Nakalima, T. Mukai., J. Vac. Sci & Technol. A 13 705 (1995)
[30] C. J. Sun, M. Zubair Anwar, Q. Chen, J. W. Yang, and M. Asif Khan, M. S. Shur, A. D. Bykhovski, Appl. Phys. Lett., 70 2978 (1997)
[31] M. Suzuki and T. Uenoyama, Phys. Rev. B 52 (1995) 8132
[32] J. W. Matthws and A. E. Blakeslee, J. Cryst. Growth 32 265 (1974)
[33] J. Bai, T. Wang, S. Sakai, Jpn. Appl. Phys. 90, 1740 (2001)
[34] R. C. Powell, N. E. Lee, Y. W. Kim and J. E. Greene, J. Appl. Phys., Part2 31, L1454 (1992)
[35] G. Martin, A. Botchkarev, A. Rockett and H. Morkoc, Appl. Phys. Lett. 68 2541 (1996)
[36] A. Polian, M. Grimsditch, and I. Grzegory, J. Appl. Phys. 79, 3343 (1996)
[37] F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, 10 024 (1997)
[38] J. Wagner, A. Ramakrishnan, and M. Maier, Appl. Phys. Lett. 74, 3863 (1999)
[39] T. Takeuchi, Shigetoshi Sota, Maki Katsuragawa et al., Jpn. J. Appl. Phys. Vol. 36 L382-L385 (1997)
[40] A. Bykhovski, B. Gelmont, and M. Shur, T. Appl. Phys. 74, 6734 (1993)
[41] S. F. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996)
[42] C. K. Sun, S. Keller, T. L.Chiu, G. Wang, M. S. Minsky, J. E. Bower, and S. P. DenBaars, IEEE J. Sel. Top. Quantum Electron. 3, 731 (1997)
[43] Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, Appl. Phys. Lett. 70, 981 (1997)
[44] T. Wang, D. Nakagawa, M. Lachab, T. Sugahara, and S. Sakai, Appl. Phys. Lett. 74, 3128 (1999)
[45] S. F. Chichibu, T. Sota, K. Wada, S. P . DenBaars, S. Nakamura, MRS Interent J. Nitride Semicond. Res. 4S1, G2.7 (1999)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊