跳到主要內容

臺灣博碩士論文加值系統

(54.173.214.227) 您好!臺灣時間:2022/01/29 15:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:宋維哲
研究生(外文):Wei-Jer Sung
論文名稱:磷化鋁鎵銦材料成長、製程與缺陷分析
論文名稱(外文):The Study of (AlxGa1-x)0.5In0.5P alloys: Material Growth, Process and Defect Analysis
指導教授:曾俊元黃凱風
指導教授(外文):Tseung-Yuen TsengKai-Feng Huang
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子物理系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:156
中文關鍵詞:磷化鋁鎵銦深層能階暫態頻譜分析深層能階缺陷
外文關鍵詞:AlGaInPTeMgDLTSdeep leveldefect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:692
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
磷化鋁鎵銦材料可成長於砷化鎵基板上,改變材料中的鋁鎵比率,可改變材料直接能隙由1.9電子伏特變為2.23電子伏特,因此可用於製作量子井結構,進而用於太陽能電池、紅光雷射及高亮度發光二極體等光電元件上。然而材料成長過程,或是摻雜行為,乃至後續製程的處理,均有可能造成材料中的缺陷形成復合中心,進而影響元件的特性。本論文主要將有機金屬化學氣象磊晶法成長磷化鋁鎵銦材料,並針對上述幾點可能造成材料缺陷的問題,以深層缺陷暫態頻譜分析儀對材料加以分析,嘗試找出正確的長晶,摻雜條件,乃至製程處理條件,以獲得良好的元件特性。首先,針對材料中的n型p型摻雜,尤其是碲與鎂的摻雜,我們在碲摻雜的磷化鋁鎵銦中發現位於傳導帶下方0.165與0.385 eV兩個捕捉電子缺陷,這兩個缺陷與碲摻雜的本身有相當密切的關係,可發現隨著碲摻雜的增加,缺陷數目亦隨之增加,且兩者的缺陷數目與材料中的含鋁比例亦有相關連,在鋁鎵比例各為一半時,兩著之缺陷數目均達到最高值,另外,在鎂摻雜的材料中,並未發現任何缺陷。利用改變長晶過程中五族三族流量比例的實驗中,可發現一與磷空缺相關的缺陷,位於傳導帶下方0.65 eV,同樣在熱退火的實驗中,也發現應與磷空缺的缺陷,活化能為0.57 eV,兩者可能分別形成不同的磷空缺缺陷,或是與其他物質結合成複合缺陷型態,因此導致所形成的缺陷位子不同。最後再針對加碼射線的影響裝,我們發現加碼射線的照射可產生數個缺陷在磷化鎵銦材料中,分別為三個電子捕捉缺陷,其中一個為材料缺陷,位於傳導帶下方0.13 eV,另兩個為界面缺陷。同時,另發現有兩個電洞捕捉缺陷,一個為材料缺陷,位於價帶上方0.29eV處,另一個則為界面缺陷。
(AlxGa1-x)0.5In0.5P quaternary alloys, lattice matched to GaAs substrates, have been widely employed in space solar cells, visible wavelength laser diodes (LDs) and high-efficiency light-emitting diodes (LEDs). As the Al composition increases from 0 to 0.5, the direct bandgap (Γ) energy of the (AlxGa1-x)0.5In0.5P layer increases from 1.9eV to 2.26eV, which covers the red to yellow-green portion of visible spectrum. As generally known, deep levels in opto-electronic devices significantly reduce the efficiency. Therefore, investigation on the deep levels in AlGaInP materials is important. First, two majority carrier traps, N1 and N2, were observed in Te-doped AlGaInP alloys with activation energies of 0.165 and 0.385 eV, respectively. Both the trap concentrations were observed to be increased with elevating the Te concentration, indicating these traps as dopant-related defects. Furthermore, both dopant-related defects showed strong correlation with Al composition in AlGaInP alloys, both of which reached the maximum concentrations at around x=0.5. On the other hand, the deep levels in p-type AlGaInP alloys have also been studied, but there was no defects observed in Mg-doped AlGaInP by deep level transient spectroscopy measurement. Various V/III mole ratios were used for growing DLTS samples and a phosphorous vacancy related trap, P2, was found in the Te-doped AlInP when the V/III mole ratio is below 120. Meanwhile, the P2 concentration obviously increased with decreasing V/III mole ratio. This defect was an electron trap, with the activation energy of 0.65. Thermal-induced defects in AlInP have also been studied by annealing the samples at 400, 500, 600 and 700 ℃ for 30 mins under N2 ambient. The sample structure herein was Schottky diode due to its simple for analyzing the defects. A thermal-treatment-induced deep level, T2, was found in the AlInP layers when the annealing temperature was higher than 500℃. Meanwhile, the T2 concentration obviously increased with elevating the annealing temperature. The emission activation energy, Ea, of trap T2 deduced from the slope of the Arrhenius plot was around 0.57 eV. Both deep electron traps and hole traps created by gamma-ray irradiation in GaInP layers have been extensively studied. Three deep electron traps, GN1 GN2 and GN3, were observed, and verified as a bulk defect and two interface states, while GP1 and GP2, were identified as deep hole traps and verified as a bulk defect and a interface state. The activation energies deduced by Arrhenius plots of bulk traps GN1 and GP1 were around 0.13 and 0.29 eV.
Chapter 1 Introduction 1
Chapter 2 Review of previous studies of AlGaInP Alloys 4
2.1 Introduction 4
2.2 Fundamental parameters of AlGaInP alloys 5
2.3 Overview of Metal-Organic Chemical Vapor Deposition of AlGaInP alloys 6
2.4 Behaviors of Dopants and Impurities in AlGaInP Alloys 10
Chapter 3 Theory and Application of Deep Level Transient Spectroscopy 23
3.1 Introduction 23
3.2 Shockley-Read-Hall Defect Statistics 24
3.3 Pulsed Bias Capacitance Transients 28
3.4 Determination of Defect Parameter 32
Chapter 4 Experiment Set-Up and Procedures 46
4.1 Growth Technology and Condition 46
4.2 Characterization Methods and Instruments 48
4.3 Sample Processing and Preparation 51
Chapter 5 Research of Defects in N-type and P-type AlGaInP alloys 67
5.1 Growth of N-type AlGaInP alloy 67
5.2 Defects in N-type AlGaInP alloy 68
5.3 Growth of P-type AlGaInP alloy 74
5.4 Defects in P-type AlGaInP alloy 75
Chapter 6 Other Important Defects in AlGaInP Alloys 107
6.1 Phosphorus Vacancies in AlInP Alloy 107
6.2 Thermal-Treatment Induced Defects in AlInP alloy 110
6.3 Gamma-Ray Irradiation Creates Deep Levels in GaInP alloy 114
Chapter 7 Conclusion 132
Reference 135
1.1 M. Yamaguchi, T. Okuda, S. J. Yaylor, T. Takamoto, E. Ikeda, and H. Kurita: Appl. Phys. Lett. 70 (1997) 1566.
1.2 A. B. Kazantsev, J. Lammasniemi, R. Jaakkola, M. Rajatora, E. Rauhala, J. Raisanen. R. K. Jain, and M. Pessa: Prog. Photovoltaics 6 (1998) 25.
1.3 H. C. Casey, Jr. and M. B. Panish: Heterostructure Lasers: Part B (Academic Press, New York, 1978).
1.4 H. Asahi, Y. Kawamura and H. Nagai: J. Appl. Phys. 54 (1983) 6958.
1.5 K. Kobayashi, S. Kawata, A. Gomyo, I. Hino and T. Suzuki: Electron. Lett. 21 (1985) 931.
1.6 M. Ishikawa, Y. Ohba, H. Sugawara, M. Yamamoto and T. Nakanisi: Appl. Phys. Lett. 48 (1986) 207.
1.7 H. Sugawara, M. Ishikawa and G. Hatakoshi: Appl. Phys. Lett. 58 (1991) 1010.
1.8 T. Yoshikawa, Y. Sugimoto, H. Hotta, K. Tada, K. Kobayashi, F. Miyasaka and K. Asakawa: Electronic Lett. 30 (1994) 2035.
1.9 H. Tada, A. Shima, T. Utakoji, T. Motoda, M. Tsungami, K. Nagahama and M. Aiga: Jpn. J. Appl. Phys. 36 (1997) 2666.
1.10 G.B. Stringfellow: Annu. Rev. Materi. Sci. 8 (1978) 73.
1.11 J.F. Lin, M.C. Wu, M.J. Jou, C.M. Chang and B.J. Lee: J Cryst. Growth 137 (1994) 400.
1.12 F.A. Kish, D.A. Vanderwater, D.C. DeFevere, D.A. Steigerwald, G.E. Hofler, K.G. park and F.M. Steranka: Electron. Lett. 32 (1996) 132.
1.13 G.C. Chi, Y.K. Su, M.J. Jou and W.C. Hung: J. Appl. Phys. 76 (1994) 2603.
1.14 M.C. Wu, J.F. Lin, M.J. Jou, C.M. Chang and B.J. Lee: IEEE Electron Device Lett. 16 (1995) 482.
1.15 G.E. Hofler, C. Carter-Coman, M.R. Krames, N.F. Gardner, F.A. Kish, T.S. Tan, B. Loh, J. Posselt, D. Collins and G. Sasser: Electronics Lett. 34 (1998) 1781.
1.16 R.T. Huang, P Holm and P.D. Wright: IEEE Transaction on Electron Devices 45 (1998) 2283.
1.17 R.S. Kern: SPIE-Int. Soc. Opt. Eng. Proceedings of Spie 3621 (1999) 16.
1.18 D.P. Bour, J.R. Shealy, G.W. Wicks and W.J. Schaff: Appl. Phys. Lett. 50 (1987) 615.
1.19 D.P. Bour and J.R. Shealy: IEEE J. Quantum Electron. 24 (1988) 1856.
1.20 A.D. Prins, J.L. Sly, A.T. Meney, D.J. Dunstan, E.P. O’Reilly, A.R. Adams and A. Valster: J. Phys. Chem. Solids 56 (1995) 349.
1.21 A.A. Bergh and P.J. Dean: Proc. IEEE 60 (1972) 156.
1.22 C.T. Sah and J.W. Walker: Appl. Phys. Lett. 22 (1973)384.
1.23 J.C. Carballes, J. Varon and T. Ceva: Solid State Commun. 9 (1971) 1627.
1.24 C.T. Sah, W.W. Chen, H.S. Fu and J.W. Walker: Appl. Phys. Lett. 20 (1972) 193.
1.25 M.G. Buehler: Solid State Electron. 15 (1972) 69.
2.1 M. Ikeda, Y. Mori, H. Sato, K. Kaneko and N. Watanabe: Appl. Phys. Lett. 47 (1985) 1027.
2.2 M. Ishikawa, Y. Ohba, H. Sugawara, M. Yamamoto and T. Nakanisi: Appl. Phys. Lett. 48 (1986) 207.
2.3 K. Kobayashi, S. Kawara, A. Gomyo, I. Hino and T. Suzuki: Electron. Lett. 21 (1985) 931.
2.4 H. Tanaka, Y. Kawamura, S. Nojima, K. Wakita and H. Asahi: J. Appl. Phys. 61 (1987) 1713.
2.5 A. Kikuchi, K. Kishino and Y. Kaneko: J. Appl. Phys. 66 (1989) 4557.
2.6 A. D. Prins, J. L. Sly, A. T. Meney, D. J. Dunstan, E. P. Oreilly, A. R. Adams and A. Valster: J. Phys. Chem. Solids 56 (1995) 349.
2.7 M. O. Watanabe and Y. Ohba: Appl. Phys. Lett. 50 (1987) 906.
2.8 D. Patel, M. J. Hafich, G. Y. Robinson, C. S. Menoi: Phys. Rev. B 48 (1993) 18031.
2.9 A. D. Prins, J. L. Sly, A. T. Meney, D. J. Dunstan, E. P. Oreilly, A. R. Adams and A. Valster: J. Phys. Chem. Solids 56 (1995) 423.
2.10 H. K. Yow, P. A. Houston and M. Hopkinson: Appl. Phys. Lett. 66 (1995) 2852.
2.11 J. Rennie, M. Okajima, M. Watanabe and G. Hatakoshi: IEEE J. Quantum Electron. 29 (1993) 1857.
2.12 S. M. Sze: Physics of Semiconductor Devices 2nd Ed. (Wiley, New York, 1981).
2.13 M. Honda, M. Ikeda, Y. Mori, K. Kaneko and N. Watanabe: Jpn. J. Appl. Phys. 24 (1985) L187.
2.14 P. Lawaetz: Phys. Rev. B 4 (1971) 3460.
2.15 T. F. Kuech, D. J. Wolford, E. Veuhoff, V. Deline, P. M. Mooney, R. Potemsky and J. Bradley: J. Appl. Phys. 62 (1987) 632.
2.16 T. F. Kuech, and E. Veuhoff: J. Cryst. Growth 68 (1984) 148.
2.17 G. B. Stringfellow: Organometallic Vapor Phase Epitaxy: Theory and Practice (Academic Press, Boston, 1989).
2.18 Air Products: The Cuttung Edge: Organometallics Update (1995) June issue.
2.19 C. H. Chen, C. A. Larsen and G. B. Stringfellow: Appl. Phys. Lett. 50 (1987) 218.
2.20 C. H. Chen, D. S. Cao and G. B. Stringfellow: J. Electron. Mater. 17 (1988) 67.
2.21 K. Kobayashi, S. Kawara, A. Gomyo, I. Hino and T. Suzuki: Electron. Lett. 21 (1985) 931.
2.22 M. Ishikawa, Y. Ohba, H. Sugawara, M. Yamamoto and T. Nakanisi: Appl. Phys. Lett. 48 (1986) 207.
2.23 C.R. Lewis, M.J. Ludowise and W.T. Dietze: J. Electronic Material 13 (1984) 447.
2.24 I. Hino, K. Kobayashi and T. Suzuki: Jpn, J Appl. Phys 23 (1984) L746.
2.25 J.S. Roberts and N.J. Mason: J. Crys. Growth 68 (1984) 422.
2.26 G.B. Stringfellow: J. Crys. Growth 75 (1986) 91.
2.27 T.F. Kuech, E. Veuhoff and B.S. Meyerson: J. Grys Growth 68 (1984) 48.
2.28 J.S. McCalmont, H.C. Casey, Jr., T.Y. Wang and G.B. Srtingfellow: J. Appl. Phys. 71 (1992) 1046.
2.29 Y. Nishikawa, H. Sugawara and Y. Kokubun: J. Crys. Growth 119 (1992) 292.
2.30 Y. Nishikawa, M.Suzuki, M. Ishikawa, Y. Kokubun and G. Hakakoshi: J. Crys. Growth 123 (1992) 181.
2.31 S.J. Pearton, J.W. Corbett and T.S. Shi: Appl. Phys. A43 (1987) 153.
2.32 W.S. Hobson: Mater. Sci. Forum 27 (1994) 148.
2.33 M. Kondo, C. Anayama, H. Sekiguchi and T. Tanahashi: J. Crys. Growth 141(1994) 1.
2.34 Y. Nishikawa, M. Ishikawa, Y. Tsuburai and Y. Kokubun: Jpn. J. Appl. Phys. 28 (1989) L2092.
2.35 Y. Nishikawa, M. Suzuki, M. Ishikawa, Y. KoKubun and G.I. Hatakoshi: J. Crys. Growth 123 (1992) 181.
2.36 T.F. Kuech and E. Veuhoff: J. Crys. Growth 68 (1984) 148.
2.37 T.F. Kuech, P.J. Wang, M.A. Tischler, R. Potemski, G.J. Scilla and F. Cardone: J. Crys. Growth 93 (1988) 624.
2.38 A. Kozen, S. Nojima, J. Tenmyo and H. Asahi: J. Appl. Phys. 59 (1986) 1156.
2.39 M. Rask, G. Landgren, S.G. Andersson, and Å. Lundberg: J. Electronic Material 17 (1988) 311.
2.40 G. Landgren, M. Rask, S.G. Andersson and A. lundberg: J. Grys. Growth 93 (1988) 646.
2.41 C.R. Abernathy, P.W. Wisk, S.J. Pearton and F. Ren: Appl. Phys. Lett. 62 (1993) 258.
2.42 A.W. Nelson and L.D. Westbrook: J. Crys. Growth 68 (1984) 102.
2.43 J.S. McCalmont, H.C. Casey, Jr., T.Y. Wang and G.B. Stringfellow: J. Appl. Phys. 71 (1992) 1046.
2.44 Y. Nishikawa, M. Suzuki and M. Okajima: Jpn. J. Appl. Phys. 32 (1993) 498.
2.45 C.H. Chen, S.A. Stockman, M.J. peansky and C.P. Kuo: High Brightness light Emitting Diodes, ed. G.B. Stringfellow and M.G. Craford (Academic Press, San Diego, 1997), pp 97-148.
2.46 M. Mannoh, A. Ishibashi and K. Ohnaka: J. Crys. Growth 145 (1994) 158.
2.47G.B. Stringfellow: Organometallic Vapor-Phase Epitaxy: Theory and Practice 2nd edition p.p. 430-433.
2.48 Y. Ohba, M. Ishikawa, H. Sugawara, M. Yamamoto and T. Nakanisi: J. Crys Growth 77 (1986) 376.
2.49 M. Ikeda, K. NaKano, Y. Mori, K. Kaneko and N. Watanabe: J. Crys Growth 77 (1986) 380.
2.50 J.S. Yuan, C.C. Hsu, R.M. Cohen and G.B. Srtingfellow: Appl. Phys. Lett. 57 (1985) 1380.
2.51 T. Suzuki, I. Hino, A. Gomyo and K. Nishida: Jpn, J Appl. Phys 21 (1982) L731.
2.52 I. Hino and T. Suzuki: J. Crys. Growth 68 (1984) 483.
2.53 D.P. Bour and J.R. Shealy: Appl. Phys. Lett. 51 (1987) 1658.
2.54 T. Ota, S. Otake and I. Iwasa: J. Cryst. Grwoth 133 (1993) 207.
2.55 D.P. Bour (1987) P.h.D. thesis, Cornell University, Ithaca. N.Y..
2.56 J.S. MoCalmont, H.C. Casey, T.Y. Wang and G.B. Stringfellow: J Appl. Phys 71 (1992) 1046.
2.57 S.J. Pearton, J.W. Corbett and T.S. Shi: Appl. Phys. A 43 (1987) 153.
2.58 W.S. Hobson: Mater. Sci. Forum 27 (1994)148.
2.59 G.B. Stringfellow: J. Cryst. Growth 75 (1986) 91.
2.60 Y. Nishikawa, M. Ishikawa, Y. Tsuburai and Y. Kokubun: Jpn, J Appl. Phys 28 (1989) L2092.
2.61 M. Kondo, C. Anayama, H. Sekiguchi and T. Tanahashi: J. Cryst. Growth 141 (1994) 1.
2.62 C.C. Wu, C.Y. Chang, P.A. Chen, H.D. Chen, K.C. Lin and S.H. Chan: Appl. Phys Lett. 65 (1994) 1269
2.63 A.W. Nelson and L.D. Westbrook: J. Cryst. Growth 68 (1984) 102.
2.64 A. Kozen, S. Nojima, J. Tenmyo and H. Asahi: J Appl. Phys 59 (1986) 1156.
2.65 G. Landgren, M. Rask, S.G. Anderson and A. Lundberg: J. Cryst. Growth 93 (1988) 464.
2.66 E. Veuhoff, H. Baumeister, R. Treichler and O. Beandt: Appl. Phys. Lett. 55 (1989) 1017.
2.67 C.R. Abernathy, P.W. Wisk, S.J. Pearton and F. Ren: Appl. Phys. Lett. 62 (1993) 258.
2.68 J.S. Roberts, N.J. Mason and M. Robinson: J. Cryst. Growth 68 (1984) 422.
2.69 T.F. Kuech, P.J. Wang, M.A. Tischler, R. Potemski, G.J. Scilla and F. Cardone: J. Cryst. Growth 93 (1988) 624.
3.1 D.V. Lang: J. Appl. Phys. 45 (1974) 3023.
3.2 Y. Tokumaru and H. Okushi: Jpn. J. Appl. Phys. 19 (1980) 2441.
3.3 W.E. Phillips and J.R. Lowney: J. Appl. Phys. 54 (1983) 2786.
3.4 D.V. Lang and R.A. Logan: J. Appl. Phys. 47 (1976) 1533.
3.5 D. Pons, P.M. Mooney and J.C. Bourgoin: J. Appl. Phys. 51 (1980) 2038.
3.6 S. Loualiche, A. Nouailhat and G. Guillot: Solid State Electron. 25 (1982) 577.
3.7 G.M. Martin, P. Terriac, S. Makram-Ebeid, G. Guillot and M. Gavand: Appl. Phys. Lett. 42 (1983) 61.
3.8 J. Lagowski, D.G. Lin, T. Aoyama and H.C. Gatos: Appl. Phys. Lett. 44 (1984) 336.
3.9 W. Platen, H.-J. Schmutzler, D. Kohl, K.-A. Brauchle and K. Wolter: J. Appl. Phys. 64 (1988) 218.
3.10 F.D. Auret, G. Myburg, H.W. Kunert and Barnard: J. Vac. Sci. Technol. B 10 (1992) 591.
3.11 R.T. Green and W.-I. Lee: J. Electron. Materials 20 (1991) 583.
3.12 C.H. Henry, H. Kukimoto, G.L. Miller and F.R. Merritt: Phys. Review B 7 (1973) 2486.
3.13 D.V. Lang: J. Appl. Phys. 45 (1974) 3014.
3.14 B. Hamiton , A.R. Peaker, S. Bramwell, W. Harding and D.R. Wight: Appl. Phys. Lett. 26 (1975) 702.
3.15 B. Hamiton, A.R. Peaker and D.R. Wight: J. Appl. Phys. 50 (1979) 6373.
3.16 S.L. Feng, J.C. Bourgoin, F. Omnes and M. Razeghi: Appl. Phys. Lett. 59 (1991) 941.
3.17 K. Domen, K. Sugiura, C. Anayama, M. Kondo, M. Sugawara, T. Tanahashi and K. Nakajima: J. Grys. Growth 115 (1991) 529.
3.18 J. Krynicki, M.A. Zaidi, J.C. Bourgoin, M. DiForte- Poisson, C. Brylinski, S.L. Delage and H. Blanck: J. Appl. Phys. 74 (1993) 260.
3.19 Q. Liu, U.Quedeweit, F. Scheffer, A. Linder, W. Prost and F.J. Tegude: Material Science Engineering: B21 (1993) 181.
3.20 H.S. Kim, M.J. Hafich, G.A. Patrizi, A. Nanda, T.J. Vogt, L.M. Woods and G.Y. Robinson: Electron. Lett. 29 (1993) 535.
3.21 M.A. zaidi, M. Zazoui and J.C. Bourgoin: J. Appl. Phys. 73 (1993) 7229.
3.22 Q.S. Zhu, K. Hiramatsu, N. Sawaki, I. Akasaki and X.N. Liu: J. Appli. Phys. 73 (1993) 771.
3.23 Z.C. Huang and C.R. Wie: J. Appl. Phys 75 (1994) 989.
3.24 Q.S. Zhu, K. Hiramatsu, N. Sawaki, I. Akasaki and X.N. Liu: J. Appli. Phys. 76 (1994) 7410.
3.25 H.K. Kwon, S.D. Kwon, I. Kim, J. B. Lee and B.D. Choe: J. Appl. Phys. 77 (1995) 512.
3.26 S.D. Kwon, H.K. Kwon and B.D. Choe: Appl. Phys. Lett. 67 (1995) 2533.
3.27 M.O. Watanabe and Y. Ohba: J. Appl. Phys 60 (1986) 1032.
3.28 C. Nozaki and Y. Ohba: J. Appl. Phys. 66 (1989) 5394.
3.29 M. Suzuki, K. Itaya, Y. Nishikawa, H. Sugawara and M. Okajima: J. Crys. Growth 133 (1993) 303.
3.30 M. Kondo, N. Okada, K. Domen, K. Sugiura, C. Anayama and T. Tanahashi: J. Electron. Material 23 (1994) 355.
3.31 T. Izumiya, H. Ishikawa, M. Mashita: J. Crys. Growth 145 (1994) 153.
3.32 A.Y. Polakov, A.A. Chelniy, N.B. Smirnov, A.V. Govorkov, A.G. Milines, X. Li, A.N. Aluev and P.B. Orlov: Materials Science Engineering B38 (1996) 36.
3.33 J.C. Chen, Z.C. Huang, K.J. Lee: J. Electron. Materials 26 (1997) 361.
3.34 C.T. Sah, R.N. Noyce and W. Shockly: Proc. IRE 45 (1957) 1228.
3.35 R.N. Hall: Phys. Rev. 87 (1952) 387.
3.36 W. Shockley and W. T. Read: Phys. Rev. 87 (1952) 835.
5.1 M.O. Watanabe and Y. Ohba: J. Appl. Phys 60 (1986) 1032.
5.2 M. Suzuki, K. Itaya, Y. Nishikawa, H. Sugawara and M. Okajima: J. Crys. Growth 133 (1993) 303.
5.3 M. Suzuki, M. Ishikawa, K. Itaya, Y. Nishikawa, G. Hatakoshi, Y. Kokubun, J. Nishizawa and Y. Oyama: J. Cryst. Growth 115 (1991) 498.
5.4 D. V. Lang: J. Appl. Phys. 45 (1974) 3023.
5.5 C. Nozaki and Y. Ohba: J. Appl. Phys. 66 (1989) 5394.
6.1 N. F. Mott: J. Non-Cryst. Solids 1 (1968) 1.
6.2 H. J. Chae, C. H. Kim, S. D. Kwon, J. B. Lee, B. D. Choe, H. Lim, H. J. Lee: J. Appl. Phys. 72 (1992) 3589.
6.3 M. Yamaguchi, T. Okuda, S. J. Yaylor, T. Takamoto, E. Ikeda, and H. Kurita: Appl. Phys. Lett. 70 (1997) 1566.
6.4 A. B. Kazantsev, J. Lammasniemi, R. Jaakkola, M. Rajatora, E. Rauhala, J. Raisanen. R. K. Jain, and M. Pessa: Prog. Photovoltaics 6 (1998) 25.
6.5 M. Yamaguchi, T. Okuda, S. J. Yaylor: Appl. Phys. Lett. 70 (1997) 2180.
6.6 J. R. Dekker, A. Tukiainen, R. Jaakkola, K. Vakevainen, J. Lammasniemi, and M. Pessa: Appl. Phys. Lett. 73 (1998) 3559.
6.7 M. A. Zaidi, M. Zazoui, and J. C. Bourgoin: J. Appl. Phys. 73 (1993) 7229.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 蘇義雄﹐民81﹐公共政策與民意調查: 建立民意測驗評估體系芻議﹐民意月刊﹐頁1-20。
2. 謝邦昌﹐民87﹐民意調查中統計分析的一些問題﹐主計月報﹐頁57-65。
3. 謝邦昌、葉瑞鈴﹐民88﹐民意調查的客觀性與公正性﹐主計月報﹐頁44-52。
4. 賴世培﹐民87﹐問卷設計中常見錯誤及其辨正之探討﹐空大行政學報﹐頁169-188。
5. 葉毓蘭﹐民85,警政新取向―談社區警政的理論與實際,警學叢刊,第27卷第3期,中央警察大學。
6. 葉毓蘭﹐民87a,警民共治的新警政―社區改善治安的策略聯盟模式,社區發展季刊,第82期。
7. 黃翠紋,民87,日本警民的社區犯罪預防模式,社區發展季刊,第82期。
8. 章光明﹐民國86,從地方警政之需求論派出所功能及其現存的幾個問題,警學叢刊,第28卷第2期。
9. 章光明﹐民國88,社區警政組織溝通的理論與實務,警學叢刊,第29卷第4期。
10. 章光明﹐民國89,社區警政方案評估研究―台北市個案分析,理論與政策,第14卷,第3期。
11. 張四明﹐民89﹐民意調查的科學基礎、政治功能與限制:以我國政府首長施政滿意度調查為例﹐行政暨政策學報﹐頁1-39。
12. 胡祖慶﹐民80﹐民意調查「信度」與「效度」之研究﹐民意月刊﹐頁1-9。
13. 周祖誠、毛嘉莉﹐民89﹐施政滿意度測量方法--問卷措詞、選項及題序的檢討與分析﹐致理學報﹐頁253-274。
14. 林燦璋﹐民83,警政與治安:迷思、醒思及指標,警政學報第25卷,中央警察大學。
15. 林燦璋﹐民84,問題導向警察與社區導向警察之比較,警學叢刊第25卷第3期,中央警察大學