(3.235.108.188) 您好!臺灣時間:2021/02/26 16:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳經國
研究生(外文):Ching-Kuo Wu
論文名稱:電性—磁性—電性(EME)微帶線之分析與應用
論文名稱(外文):Analysis and Application of Electric-Magnetic- Electric (EME) Microstrip Lines
指導教授:莊晴光
指導教授(外文):Ching-Kuang C. Tzuang
學位類別:博士
校院名稱:國立交通大學
系所名稱:電信工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:75
中文關鍵詞:週期結構微帶線濾波器天線
外文關鍵詞:Periodic StructureMicrostrip LineFilterAntenna
相關次數:
  • 被引用被引用:1
  • 點閱點閱:404
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:116
  • 收藏至我的研究室書目清單書目收藏:3
本文提出一種新穎的光子能帶結構。此種週期結構單元乃由連續且相互耦合的金屬線圈所構成,故可傳導直流電流;但於某些禁止頻帶內,將因具有高阻抗而無法傳導交流電流。利用有限元素法來計算此種二維週期能帶結構的表面波色散特性,將可發現其在8.8至12.4 GHz及21.4至23.6 GHz的高頻微波頻段將具有全方向性的禁止頻帶。
而運用此種週期能帶結構,已成功地據以設計出一低損耗,且具有慢波特性的新式微帶線。此種微帶線以平行並排的電性與磁性複合表面金屬來取代傳統微帶線的金屬線。磁性表面乃由一群前文所述的二維週期能帶結構連結耦合而成。此表面在禁止頻帶內具有高阻抗狀態;而在低於禁止頻帶的操作頻率,將可藉由調整電性與磁性表面的尺寸來控制其傳播特性。本文採用由全波場論法配合矩陣數值演算法來得到此種微帶線的色散曲線,其值與由傳統習知的散射參數萃取法所得到之值近乎一致。而經由實驗驗證的理論結果指出,運用此種複合結構將可輕易地使微帶線的慢波值增加達60%之多,且不增加傳導損耗。此種複合電磁表面微帶線可用傳統的印刷電路板製程技術來完成,且在主模傳播時對製程上可能造成的週期結構的相對排列位置誤差並不敏感。此新型微帶線亦具有連續的均勻金屬接地面,故易與其它微波元件整合於多層板電路中而不致互相干擾。本文亦利用此種微帶線設計成一可消除諧波頻率響應的微小化帶通濾波器。相較於利用相同介質基板的傳統微帶線帶通濾波器,此種週期結構濾波器的長度可縮小達26%,且量測的數值顯示將不會犧牲傳導損耗與濾波頻寬來達成這些優點。
本文更進一步地探討具有不同週期結構組成比例的複合表面微帶線之第一高階模色散特性。同時成功地設計出具有傳統洩漏波型的微小化雙頻洩漏波天線。相較於具有相同洩漏波截止頻率的傳統微帶線,此種複合微帶線的線寬可縮小達47.5%。此種微帶線的高階模色散曲線亦可利用矩陣數值運算法得到,且已由量測到的洩漏波輻射場型加以驗證。色散曲線與模電流分佈皆顯示此微小化雙頻天線在5.25 GHz及12.35 GHz這兩個頻帶,具有相似的洩漏波掃頻特性與扁平輻射場型。故此種複合微帶線未來將可廣泛地用以設計各式微小化,且高性能的微波電路元件與洩漏波陣列天線。

This thesis presents a new type of photonic bandgap (PBG) structure that is characterized by having high surface impedance. Although it is made of continuous metal coils, and conducts dc currents, it does not conduct ac currents within a forbidden frequency range. The surface-wave dispersion diagram of the two-dimensional PBG substrate has been numerically computed by the finite-element method and found to have a complete stopband in the frequency range of 8.8-12.4 and 21.4-23.6 GHz, respectively.
This PBG structure is successfully used to design a novel integrated microstrip low-loss, slow-wave line. The new microstrip replaces the conventional metal strip by composite metals paralleling the electric and magnetic surfaces. The magnetic surface made of an array of coupled inductors shows a high-impedance state in the stopband, below which the propagation properties can be well controlled by varying the dimensions of the electric and magnetic surfaces. The dispersion curves obtained by matrix-pencil analyses closely correspond to those obtained by scattering parameters extraction. Theoretical results, as confirmed experimentally, indicate that an increase of more than 60% in the slow-wave factor can be achieved without sacrificing propagation losses, using the proposed structure. This electric-magnetic-electric (EME) microstrip is insensitive to the alignment position of the periodical structure, and can be constructed using conventional printed-circuit-board (PCB) fabrication processes and integrated with other microwave components in a multi-layered circuit. A compact EME band pass filter (BPF) with suppressed harmonic responses is presented. The length of the filter is reduced by 26%, and the measured insertion loss and fractional bandwidth is comparable to that of a conventional microstrip BPF on the same substrate.
Furthermore, the dispersion characteristics of the EME microstrip, with different PBG filling percentages, at the first higher order (EH1) are presented. A compact, dual-band leaky-mode antenna of similar radiation characteristics is successfully designed. The line width is reduced by 47.5%, compared to that of the conventional microstrip for the same onset frequency of the leaky mode. The dispersion curves of the EME microstrip, obtained by matrix-pencil analyses and validated experimentally by measured radiation patterns, indicates the strong radiation behavior with fan beam patterns at two frequency bands of 5.25 GHz and 12.35 GHz. The EME microstrip is potentially useful for compact microstrip component and leaky-mode antenna array design.

Abstract (Chinese) i
Abstract (English) iii
Acknowledgments v
Contents vi
List of Figures viii
Chapter 1 Introduction 1
1.1 Photonic Bandgap Structure 1
1.2 EME Slow-Wave Microstrip 2
1.3 EME Microstrip Leaky-Mode Antenna 5
Chapter 2 Two-Dimensional PBG Structure 7
2.1 High-Impedance-Surface Unit Cell 7
2.2 Dispersion Diagram 9
2.3 Field Distribution 12
Chapter 3 Slow-Wave Propagation of the EME Microstrip 15
3.1 Principles and Operation 15
3.2 Propagation Characteristics of EME Microstrip and Validity Checks 17
3.2.1 Scattering Analyses 17
3.2.2 Dispersion Characteristics 21
3.2.3 Losses 27
3.3 EME Microstrip Design Chart 30
3.3.1 Influence of Symmetry on EME Microstrip 30
3.3.2 Design Curves for EME Microstrip 33
3.4 Compressed-Size Bandpass Filter 35
3.5 EME Suspended Microstrip 39
Chapter 4 Leaky-Wave Propagation of the EME Microstrip 43
4.1 Operation and Design Guidelines 43
4.2 Characteristics of the EME Microstrip Leaky Line 45
4.2.1 Scattering Analyses 45
4.2.2 Dispersion Characteristics 48
4.2.3 Current Distributions 52
4.3 Experimental Results and Validity Checks 57
Chapter 5 Conclusion 64
Appendix A: Matrix Pencil Method 66
Appendix B: Convergence Study 68
Bibliography 70

[1] E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Amer. B, Opt. Phys., vol. 10, pp. 283-295, Feb. 1993.
[2] G. P. Gauthier, A. Courtay, and G. M. Rebeiz, “Microstrip antennas on synthesized low dielectric-constant substrates,” IEEE Trans. Antennas Propagat., vol. 45, pp. 1310-1314, Aug. 1997.
[3] J. Maloney, M. Kesler, B. Shirley, and G. Smith, “A simple description for waveguiding in photonic bandgap materials,” Microwave Opt. Technol. Lett., vol. 14, pp. 261-266, Nov. 1997.
[4] V. Radisic, Y. Qian, and T. Itoh, “Broad-band power amplifier using dielectric photonic bandgap structure,” IEEE Microwave Guided Wave Lett., vol. 8, pp. 13-14, Jan. 1998.
[5] T. Kim and C. Seo, “A novel photonic bandgap structure for low-pass filter of wide stopband,” IEEE Microwave Guided Wave Lett., vol. 10, pp. 13-15, Jan. 2000.
[6] Y. K. Kuo, C. H. Wang, and C. H. Chen, “Novel reduced-size coplanar-waveguide bandpass filters,” IEEE Microwave Wireless Comp. Lett., vol. 11, pp. 65-67, Feb. 2001.
[7] R. F. J. Broas, D. F. Sievenpiper, and E. Yablonovitch, “A high-impedance ground plane applied to a cellphone handset geometry,” IEEE Trans. Microwave Theory Tech., vol. MTT-49, pp. 1262-1265, Jul. 2001.
[8] F. R. Yang, Y. Qian, R. Coccioli, and T. Itoh, “A novel low-loss slow-wave microstrip structure,” IEEE Microwave Guided Wave Lett., vol. 8, pp. 372-374, Nov. 1998.
[9] F. R. Yang, K. P. Ma, Y. Qian, and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits,” IEEE Trans. Microwave Theory and Tech., vol. 47, pp. 1509-1514, Aug. 1999.
[10] R. Coccioli, F. R. Yang, K. P. Ma, and T. Itoh, “Aperture-coupled patch antenna on UC-PBG substrate,” IEEE Trans. Microwave Theory Tech., vol. MTT-47, pp. 2123-2130, Nov. 1999.
[11] H. Hasegawa, M. Furukawa and H. Yanai, “Properties of microstrip line on Si-SiO2 system,” IEEE Trans. Microwave Theory Tech., vol. MTT-19, pp. 869-881, Nov. 1971.
[12] G. W. Hughes and R. M. White, “ Microwave properties of nonlinear MIS and Schottky-barrier microstrip,” IEEE Trans. Electron Devices, vol. ED-22, pp. 945-946, Oct. 1975.
[13] D. Jäger, “Slow-wave propagation along variable Schottky-contact microstrip line,” IEEE Trans. Microwave Theory Tech., vol. MTT-24, pp. 566-573, Sep. 1976.
[14] H. Hasegawa and H. Okizaki, “M.I.S. and Schottky slow-wave coplanar striplines on GaAs substrates,” Electron. Lett., vol. 13, pp. 663-664, 1977.
[15] H. Ogawa and T. Itoh, “Slow-Wave Characteristics of Ferromagnetic Semiconductor Microstrip Line,” IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp. 1478-1482, Dec. 1986.
[16] K. Wu and R. Vahldieck, “Hybrid-Mode Analysis of Homogeneously and Inhomogeneously Doped Low-Loss Slow-Wave Coplanar Transmission Lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-39, pp. 1348-1360, Aug. 1991.
[17] R. Sorrentino, G. Leuzzi and A. Silbermann, “Characteristics of metal-insulator-semiconductor coplanar waveguides for monolithic microwave circuits,” IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp. 410-416, Apr. 1984.
[18] D. Jäger and J. P. Becker, “Distributed variable-capacitance microstrip lines for microwave applications,” Appl. Phys., vol. 12, pp. 203-207, 1977.
[19] K. Wu and R. Vahldieck, “Propagation Characteristics of MIS Transmission Lines with Inhomogeneous Doping Profile,” IEEE Trans. Microwave Theory Tech., vol. MTT-38, pp. 1872-1878, Dec. 1990.
[20] Y. Fukuoka and T. Itoh, “Slow-Wave Coplanar Waveguide on Periodically Doped Semiconductor Substrate,” IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp. 1013-1017, Dec. 1983.
[21] S. Seki and H. Hasegawa, “Cross-tie slow-wave coplanar waveguide on semi-insulating GaAs substrates,” Electron. Lett., vol. 17, pp. 940-941, 1981.
[22] T. H. Wang and T. Itoh, “Compact grating structure for application to filters and resonators in monolithic microwave integrated circuits,” IEEE Trans. Microwave Theory Tech., vol. 35, pp. 1176-1182, Dec., 1987.
[23] H. Kamitsuna and H. Ogawa, “Novel slow-wave meander lines using multilayer MMIC technologies,” IEEE Microwave Guided Wave Lett., vol. 2, pp. 8-10, Jan. 1992.
[24] Y. Qian, V. Radisic, and T. Itoh, “Simulation and experiment of photonic band-gap structures for microstrip circuits,” in 1997 Asia-Pacific Microwave Conf., Hong Kong, Dec. 1997, pp. 585-588.
[25] V. Radisic, Y. Qian, R. Coccioli, and T. Itoh, “Novel 2-D photonic bandgap structure for microstrip lines,” IEEE Microwave Guided Wave Lett., vol. 8, pp. 69-71, Feb. 1998.
[26] Q. Xue, K. M. Shum and C. H. Chan, “Novel 1-D microstrip PBG cells,” IEEE Microwave Guided Wave Lett., vol. 10, pp. 403-405, Oct. 2000.
[27] H. Y. D. Yang, N. G. Alexopoulos, and E. Yablonovitch, “Photonic band-gap materials for high-gain printed circuit antennas, “ IEEE Trans. Antenna Propagation, vol. 45, pp. 185-187, Jan. 1997.
[28] S. T. Peng and A. A. Oliner, “Guidance and leakage properties of a class of open dielectric waveguides: part I-mathematical formulations,” IEEE Trans. Microwave Theory Tech., vol. MTT-29, pp. 843-855, Sep. 1981.
[29] A. A. Oliner, S. T. Peng, T. I. Hsu, and A. Sanchez, “Guidance and leakage properties of a class of open dielectric waveguides: part II-new physical effects,” IEEE Trans. Microwave Theory Tech., vol. MTT-29, pp. 855-869, Sep. 1981.
[30] F. Schwering and S. T. Peng, “Design of dielectric grating antennas for millimeter-wave applications,” IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp. 199-209, Feb. 1983.
[31] A. A. Oliner and K. S. Lee, “The nature of the leakage from higher modes on microstrip line,” in IEEE MTT-S Microwave Symp. Dig., pp. 57-60, May 1986.
[32] H. Shigesawa, M. Tsuji, and A. A. Oliner, “Effects of air gap and finite metal plate width on NRD guide,” in IEEE MTT-S Microwave Symp. Dig., pp. 119-122, May 1986.
[33] A. A. Oliner, “Leakage from higher modes on microstrip line with application to antennas,” Radio Sci., vol. 22, no. 6, pp. 907-912, Nov. 1987.
[34] H. Shigesawa, M. Tsuji, and A. A. Oliner, “Conductor-backed slot line and coplanar waveguide: dangers and full-wave analyses,” in IEEE MTT-S Microwave Symp. Dig., pp. 199-202, May 1988.
[35] L. Carin and N. K. Das, “Leaky waves on broadside-coupled microstrip,” IEEE Trans. Microwave Theory Tech., vol. MTT-40, pp. 58-66, Jan. 1992.
[36] G. J. Chou and C. K. C. Tzuang, “An integrated quasi-planar leaky-wave antenna,” IEEE Trans. Antennas Propagat., vol. AP-44, pp. 1078-1085, Aug. 1996.
[37] G. J. Chou and C. K. C. Tzuang, “Oscillator-type active-integrated antenna: the leaky-mode approach,” IEEE Trans. Microwave Theory Tech., vol. MTT-44, pp. 2265-2272, Dec. 1996.
[38] H. Y. D. Yang and D. R. Jackson, “Theory of line-source radiation from a metal-strip grating dielectric-slab structure,” IEEE Trans. Antenna Propagation, vol. 48, pp. 556-564, Apr. 2000.
[39] C. N. Hu and C. K. C. Tzuang, “Analysis and design of large leaky-mode array employing the coupled-mode approach,” IEEE Trans. Microwave Theory Tech., vol. MTT-49, pp. 629-636, Apr. 2001.
[40] Z. D. Liu, P. S. Hall, and D. Wake, “Dual-frequency planar inverted-F antenna,” IEEE Trans. Antenna Propagat., vol. 45, pp. 1451-1458, Oct. 1997.
[41] H. Nakano, N. Ikeda, Y. Y. Wu, R. Suzuki, H. Mimaki, and J. Yamauchi, “Realization of dual-frequency and wide-band VSWR performances using normal-mode helical and inverted-F antennas,” IEEE Trans. Antenna Propagat., vol. 46, pp. 788-793, Jun. 1998.
[42] Y. H. Suh and K. Chang, “Low cost microstrip-fed dual frequency printed dipole antenna for wireless communications,” Electron. Lett., vol. 36, pp. 1177-1179, July 2000.
[43] J. H. Lu, C. L. Tang, and K. L Wong, “Novel dual-frequency and broad-band designs of slot-loaded equilateral triangular microstrip antennas,” IEEE Trans. Antenna Propagat., vol. 48, pp. 1048-1054, July 2000.
[44] D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexόpolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory and Tech., vol. 47, pp. 2059-2074, Nov. 1999.
[45] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light. Princeton, NJ: Princeton Univ. Press, 1995.
[46] F. R. Yang, K. P. Ma, Y. Qian, and T. Itoh, “A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure,” IEEE Trans. Microwave Theory and Tech., vol. 47, pp. 2092-2098, Nov. 1999.
[47] C. K. Tzuang and Y. C. Chen, “Dispersion characteristics of microstrip with periodic perturbations,” in 2000 IEEE MTT-S Symp. Dig., pp. 1537-1540, Jun. 2000.
[48] A. A. Oliner, “Radiating periodic structures: analysis in terms of k vs. β diagrams,” SHORT COURSE on Microwave Field and Network Techniques, June 4, 1963.
[49] Y. Hua and T. K. Sarkar, “Generalized pencil-of-function method for extracting poles of an EM system from its transient response,” IEEE Trans. Antenna Propagat., vol. 37, pp. 229-234, Feb. 1989.
[50] W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. on Components, Hybrids, and Manufacturing Tech., vol. 15, pp. 483-490, Aug. 1992.
[51] F. R. Yang, R. Coccioli, Y. Qian, and T. Itoh, “Analysis and application of coupled microstrips on periodically patterned ground plane,” in 2000 IEEE MTT-S Symp. Dig., pp. 1529-1532, Jun. 2000.
[52] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures. MA: Artech House, 1980.
[53] T. Itoh, “Overview of Quasi-Planar Transmission Lines,” IEEE Trans. Microwave Theory Tech., vol. 37, pp. 275-280, Feb. 1989.
[54] T. Itoh, “Spectral domain immitance approach for dispersion characteristics of generalized printed transmission lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-28, pp. 733-736, July 1980.
[55] A. Oliner, “Scannable millimeter wave arrays”, Tech. Rep., Polytechnic University, 1989.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 簡志文、蔡錫濤,90年,人力資源管理角色定位之研究,人力資源發展月刊,第一六三期。
2. 羅新興、張緯良,85年,國防人力結構與財力供需互動關係之探討,國防管理學院學報,第十七卷第二期。
3. 簡吉照,91年,知識管理:我國警察人力資源發展的新策略,警學叢刊,第三十二卷第五期。
4. 鍾穎盛,86年,企業精神再造警政的省思與反思-對新政府運動的探討,警學叢刊,第廿八卷第三期。
5. 謝雨生、鄭宜仲,82年,多元迴歸分析的假定與實例檢討-多元線性重合現象的診斷與處理,農業推廣學報,第十期。
6. 蔣基萍,84年,犯罪與警力的探討,警政學報,第廿七卷。
7. 劉嘉發,86年,建構合理警力配置之探討,政策月刊,廿九卷。
8. 葉至誠,86年,經濟發展與人力規劃,人力發展月刊,第三十七卷。
9. 楊承亮、王震中,87年,國軍軍官人力規劃模擬模式,國防管理學院學報,第十九卷第一期,。
10. 黃朝盟,88年,公務員職務輪調制度之影響評估,行政暨政策學報,第一卷。
11. 陳明傳,85年,論警政工作之品質管理-警察教育改革之基石,警學叢刊,第廿七卷第一期。
12. 陳明傳,80年,科學的人力規劃,警學叢刊,第廿二卷第二期。
13. 張清景,81年,人力規劃與員工事業生涯規劃,人力資源經理雜誌,第十三卷。
14. 馬心韻,86年,我國警察組織人力資源規劃與發展組織相關論問題之探討,警專學報,第二卷第二期。
15. 翁興利,88年,警政再造:警力結構的觀點,理論與政策,第十三卷第一期。
 
系統版面圖檔 系統版面圖檔