(54.236.58.220) 您好!臺灣時間:2021/03/05 06:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳永斌
研究生(外文):Yong-Bin Chan
論文名稱:低溫共燒陶瓷寬頻天線與互補金氧半整合天線
論文名稱(外文):Wideband Low Temperature Cofired Ceramic Antennas and Integrated Antennas based on CMOS Technology
指導教授:林育德林育德引用關係
指導教授(外文):Yu-De Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:70
中文關鍵詞:低溫共燒陶瓷
外文關鍵詞:LTCC
相關次數:
  • 被引用被引用:1
  • 點閱點閱:281
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於個人無線通訊與區域網路的需求,對於射頻元件輕薄短小的要求是愈加明顯,就以天線而言,欲縮小天線尺寸就必須縮短其等效共振波長,通常是透過高介電係數材質封包天線本體以增加輻射體的等效介電常數,進而縮小天線尺寸。亦可透過天線結構上改進,例如晶片型天線(chip antenna),將天線本體以多層繞線的方式,充分利用三維的立體空間與週圍高介電材質負載來達到縮小天線尺寸的目的,故天線的微小化目前仍以使用高介電係數材料的介電質天線(dielectric resonator antenna)與晶片型天線為主要發展趨勢,但我們知道天線有其物理上的限制,一但尺寸縮小,其頻寬與天線增益亦隨之減小,而無法適用於現行的行動無線通訊系統,所以本文將提出一些增加頻寬方式,例如: (1)外加一負載阻抗來調整頻寬;(2)創造兩個以上頻率相近的共振路徑使頻寬重合達到寬頻效果,基於上
述兩種方式來對低溫共燒陶瓷天線作最佳化,以期更適用於目前2.4GHz之無線區域網路系統,在實驗中我們以創造兩個以上共振點的方式在螺旋型天線(helix antenna)中,將天線未端連接回天線本體的某一點,相當於製造另一個共振路徑,以此型式來製作2.44GHz晶片型天線,量測其傳輸特性,其頻寬皆大於12%,約300MHz,雖與螺旋型天線(helix antenna)比較,其頻寬增加的趨勢不大,但已有不錯的頻寬表現。
在互補金屬氧化閘極天線(CMOS antenna)方面,我們利用半導體實驗室的製程來研製一般行動無線通訊天線,如倒F型天線(PIFA)與城牆式天線(meandered-line antenna),試圖利用此製程的優勢將天線元件微小化,並針對幾種晶片材質來比較其微波特性,所以在實驗中我們以PIFA與meandered-line天線的製作與量測,來驗證所欲表現的晶片材質(proton implanted in wafer)的微波特性,確實較其它晶片材質來的優異。

Due to the requirement of personal wireless communication and wireless local network, the demand of small, low-profile RF components is an inevitable trend in recent years. As far as antenna is concerned, in order to miniaturize the size of antenna must shorten the equivalent wavelength. We usually package the antenna by high dielectric constant material to increase the whole equivalent dielectric constant of the radiator as well to miniaturize the dimension of antenna. We also can improve the antenna structure, like chip antenna So as to improving the antenna structure, like the chip antenna to make full use of the three dimension space and high dielectric constant material loading around itself to achieve the aid of reducing the antenna size by the way of winding around the multiplayer. So the main tendency of miniaturizing antenna size is still the dielectric resonator antenna and chip antenna. But as we know the physical limitations of antenna is the antenna bandwidth and gain reducing with the miniaturizing of dimension, then not able to adapt the recent mobile communication system. So in this thesis, we will research some way to increasing bandwidth, example: (1) impedance loading, or (2) creation of two resonant paths with nearby resonant frequencies to increase the bandwidth. According to above two methods, we will optimize our antenna design to satisfy the present mobile communication system.
Concerning the CMOS antenna, we utilize the technology of semiconductor laboratory to develop the general mobile antenna like planar inverted-F antenna and meander line antenna try to take advantage of the CMOS manufacture process to miniaturize the antenna elements as well to compare the microwave characteristic between several wafer materials.

目 錄
頁碼
中文摘要………………………………………………………………….i
英文摘要………………………………………………………………...iii
謝誌………………………………………………………………………v
目錄..…………………………………………………………………….vi
圖目錄………………………………………………………………….viii
表目錄…………………………………………………………………...xi
第一章 介紹……………………………………………………………01
序言……………………………………………………………01
緣起……………………………………………………………02
第一節 工程動機……………………………………………02
第二節 工程目的……………………………………………03
第三節 工程作法……………………………………………03
第四節 研究成果簡述………………………………………04
第二章 低溫共燒陶瓷天線……………………………………………05
第一節 製程簡介……………………………………………05
第二節 天線設計規格………………………………………07
第三節 低溫共燒陶瓷天線設計與分析……………………09
第四節 實驗與量測結果……………………………………18
第五節 效果評估……………………………………………36
第三章 互補金屬氧化閘極整合天線…………………………………37
第一節 製程簡介…………………………………….………37
第二節 天線設計規格………………………………….……38
第三節 積體電路材質參數………………………….………40
第四節 積體電路天線設計與分析…………………….……43
第五節 實驗與量測結果……………………………….……44
第六節 效果評估……………………………………….……60
第四章 結論與未來改進的方向………………………………………60
參考文獻……………………………………………………….…….62

參考文獻
[1] Charlel Q. Scrantom, James C. Lawson, “LTCC technology : where we are and where we’re going-II,” Technologies for Wireless Applications, 1999. Digest. 1999 IEEE MTT-S Symposium on , 1999.
[2] Jau-Ho Jean, T. K. Gupta, K. M. Nair, K. Niwa, “Multilayer electronic ceramic device,” The American Ceramic Society Ceramic transaction volume 97.
[3] Galina Kniajer, Kenton Dechant et al, “Low loss, low temperature cofired ceramics with higher dielectric constants for multichip modules(MCM),” IEEE International Conference on Multichip Modules, 1997
[4] Liang H., Sutono A., Laskar J., Smith W.R.,” Material parameter characterization of multilayer LTCC and implementation of high Q resonators,” IEEE MTT-S Digest ,1999
[5] Blood W., Feng Ling, Kamgaing T., Myers T., Petras M.,” Simulation, modeling, and testing embedded RF capacitors in low temperature cofired ceramic”, Electronic Components and Technology Conference, 2001. Proceedings., 51st ,2001
[6] S. H. Sim, C. Y. Kang, S. J. Yoon, Y. J. Yoon and H. J. Kim, “Broadband multilayer ceramic chip antenna for handsets”, IEEE Electronics Letters, Volume: 38 Issue: 5 , 28 Feb. 2002.
[7] Scott A. Raby, Andreas C. Cangellaris, “Interconnect properties and multilayer bandpass filter design in LTCC substrates,” IEEE Wireless Communications Conference, 1997.
[8] W. L. Stutzman and G. A. Thiele, “Antenna theory and design” John Wiley & Sons Publishers, second edition,pp.82-83.
[9] K. Fujimoto et al, Small Antenna, John Wiley & Sons Publishers, pp. 116-119.
[10] K. T. Chan, A. Chin, Y. B. Chen, Y. D. Lin, T. S. Duh, and W. J. Lin, “Integrated antennas on Si, Proton-implanted Si and Si-on-quartz,”IEDM Tech. Dig.,pp.40.6.1-40.6.4,2001.
[11] K. T. Chan, A. Chin, C. M. Kwei, D. T. Shien, and W. J. Lin, “Transmission line noise from standard and porton-implanted Si,” 2001 IEEE MTT-S Digest, vol. 2, pp. 763-766, 2001.
[12] K. T. Chan, A. Chin, C. M. Kwei, D. T. Shien, and W. J. Lin, “Transmission line noise from standard and porton-implanted Si,” 2001 IEEE MTT-S Digest, vol. 2, pp. 763-766, 2001
[13] Y. H. Wu, A. Chin, K. H. Shih, C. C. Wu, C. P. Liao, S. C. Pai, and C. C. Chi, “Fabricaton of very high resistivity Si with low loss and cross talk,” IEEE Electron Device Letters, vol.21, no. 9, pp.442-444, Sep. 2000.
[14] D. M. Pozar, Microwave Engineering, Wiley, Sec.3.8.
[15] G. E. Ponchak, A. Margomenos, Linda P. B. Katehi, “Low-loss CPW on low-resistivity Si substrates with a micromachined polyimide interface layer for RFIC interconnects”, IEEE Trans. Microwave Theory Tech., vol. 49, no. 5, pp. 866-870, May 2001.
[16] I. Toyoda, K. Nishikawa, T. Tokumitsu, K.Kamogawa, C.Yamaguchi, M. Hirano, and M. Aikawa, “Three-dimensional masterslice MMIC on Si substrate,” 1997 IEEE Radio Frequency Integrated Circuits Symposium, pp.113-116, 1997.
[17] C. Liao, T. H. Huang, C. Y. Lee, D. Tang, S. M. Lan, T. L. Yang, and L. F. Lin, “Method of creating local semi-insulating regions on silicon wafers for device isolation and realization of high-Q inductors,” IEEE Electron Device Letter, vol. 19, pp.416-462, Dec. 1998.
[18] C. Soras, M. Karaboikis, G. Tsachtsiris, and V. Makios, “Analysis and design of an inverted-F antenna printed on a PCMCIA card for the 2.4GHz ISM band,” IEEE Antennas and Propagation Magazine, vol. 44, pp. 37-44, Feb.2002.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔