跳到主要內容

臺灣博碩士論文加值系統

(54.225.48.56) 您好!臺灣時間:2022/01/19 22:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭芳君
研究生(外文):Kuo Fang-chun
論文名稱:光纖通訊系統中串鎖式分波多工編碼之研究
論文名稱(外文):Concatenated WDM Coding for Optical Communication Systems
指導教授:高銘盛尉應時
指導教授(外文):Ming-Seng KaoWinston.I Way
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:60
中文關鍵詞:串鎖編碼分波多工光通訊
外文關鍵詞:Concatenated codeWDMOptical Communication
相關次數:
  • 被引用被引用:0
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:99
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出應用於光纖通訊系統的「串鎖式WDM編碼系統」以徹底利用編碼增益。串鎖式WDM編碼系統是將外部ITU RS (255,239) code和內部WDM編碼系統串接起來,和傳統串鎖序列RS編碼不同。其中內部的WDM編碼系統將資料以並列的方式編碼,並且為了使系統位元率不變因此把編碼後產生的檢查碼置於額外的波長通道中,因此由於系統位元率改變而導致的損失只來自外部RS編碼。雖然作為內部編碼的漢明碼(Hamming code) 只擁有糾正單一錯誤能力,不像RS碼可以糾正多個錯誤,但是串鎖式WDM編碼系統的編碼增益和傳統串鎖序列RS編碼一樣好。不但如此,我們的編碼系統擁有其他優點:首先內部WDM編碼系統中的並列編碼方式比序列編碼簡單,在高速光通訊系統中較容易實現。再者和序列編碼比起來,內部WDM編碼可以大大減少編碼器與解碼器的數量。

The concatenated WDM coding system for optical communication system is proposed to fully utilize the FEC gain. The concatenated WDM coding system is concatenating an outer ITU RS (255,239) code with an inner WDM coding system which is different from conventional concatenated serial RS code. The inner WDM coding system encodes data in parallel and puts the parity-check bits in additional wavelength channels to achieve constant bit rate. Therefore, the penalty caused by increased bit rate is contributed by inner RS code only. Unlike the RS code with multiple-error-correcting capability, the Hamming code with single-error-correcting capability is adopted as the inner code. Nevertheless, the coding gain of the concatenated WDM coding system is as good as the conventional concatenated serial RS code. Moreover, our coding scheme provides other advantages. First, the parallel coding configuration of inner WDM coding system is simpler than that of serial codes, being easier to be implemented in high-speed optical systems. Second, compared with serial coding, inner WDM coding is able to reduce heavily the number of encoder/decoder pairs.

Chapter 1 Introduction 1
Chapter 2 Coding Architecture 4
2.1 Introduction 4
2.2 WDM coding system 5
2.2.1 WDM coding system 5
2.2.2 Modified WDM coding system-single parity-check channel 8
2.2.3 Performance analysis [2], [3] 10
2.3 ITU RS (255,239) Code 13
2.3.1 Coding configuration 13
2.3.2 RS (255,239) code function performance 15
2.4 Concatenated code [8] 18
2.4.1 Coding scheme 18
2.4.2 Coding configuration 19
2.4.3 Performance of the concatenated code 20
2.5 Conclusion 25
Chapter 3 Concatenated WDM Coding System 27
3.1 Introduction 27
3.2 System Description 29
3.2.1 Coding scheme I (Symbol serial coding) 29
3.2.2 Coding scheme II (Symbol parallel coding) 31
3.2.3 Coding scheme III (Bit Parallel coding) 33
3.2.4 Comparison between three coding schemes 35
3.3 Performance analysis 36
3.3.1 FEC coding performance 36
3.3.2 Net electrical coding gain 40
3.4 Discussion 42
Chapter 4 FEC in Optical Inline Amplifier system 45
4.1 BER Calculations of Single Stage 45
4.2 Cascaded Amplifier Chain 48
4.2.1 Optimal Amplifier Placement 48
4.2.2 System Model 50
4.3 System Design 52
4.3.1 Optimal system with different performance requirement 52
4.3.2 Mid-span detection 54
4.4 FEC in Optical Inline Amplifier system 56
Chapter 5 Conclusions 59
Figure List
Fig. 2.1 The block diagram of WDM coding system 6
Fig. 2.2 The block diagram of the modified WDM coding system 9
Fig. 2.3 Frame structure of the modified WDM coding system 9
Fig. 2.4 Decoded BER vs. uncoded BER for different shortened Hamming (n,k) code 12
Fig. 2.5 The error-extension for different shortened Hamming (n,k) code 12
Fig. 2.6 G.975-FEC encoder architecture 14
Fig. 2.7 G.975-FEC decoder architecture 14
Fig. 2.8 G.975-FEC Frame construction 15
Fig.2.9 The bit error rate (BER) performance of RS (255,239) code 17
Fig. 2.10 The symbol error rate (SER) performance of RS (255,239) code 17
Fig. 2.11 The concatenated coding scheme 19
Fig. 2.12 The modified concatenated coding scheme 19
Fig. 2.13 The frame construction of the concatenated code 20
Fig. 2.14 Qin vs. BERout of single RS code for different overhead ratio 22
Fig. 2.15 The relationship between coding gain[dB] and overhead ratio[%] of single RS codes with the same codeword length (255 symbols) at BERout=10-12 23
Fig. 2.16 Qin vs. BERout of concatenated RS codes with different inner RS codes for an outer RS (255,239) code 24
Fig. 2.17 The relationship between NE-CG [dB] and overhead ratio [%] of single RS codes with the same codeword length (255 symbols) and of concatenated RS codes with different inner RS codes for an outer RS (255,239) code at BERout=10-12 24
Fig. 2.18 The BER performance of ITU RS (255,239) code and Hamming codes with different codeword length 26
Fig. 3.1 Block diagram of concatenated code used in WDM lightwave system where m and q are number of data channels and parity-check channels, respectively. 28
Fig. 3.2 The encoder/decoder block diagram of concatenated WDM coding system 29
Fig. 3.3 The inner WDM encoder block diagram of coding scheme I 30
Fig. 3.4 The inner WDM decoder block diagram of coding scheme I 31
Fig. 3.5 The inner WDM encoder block diagram of coding scheme II 32
Fig. 3.6 The inner WDM decoder block diagram of coding scheme II 33
Fig. 3.7 The inner WDM encoder block diagram of coding scheme III 34
Fig. 3.8 The inner WDM decoder block diagram of coding scheme III 34
Fig. 3.9 BER performance of concatenated code for different inner codes with an outer RS (255,239) code 39
Fig. 3.10 Decoded BER vs. uncoded BER of inner decoder for different inner codes without an outer RS (255,239) code. 39
Fig. 3.11 The Qin vs. the BERout of concatenated outer RS (255,239) code for different inner codes 41
Fig. 4.1 Schematic of a single-stage optical amplifier system 45
Fig. 4.2 Two possible of system configurations 49
Fig. 4.3 Cascaded Inline Amplifier chain system 50
Fig. 4.4 Maximum amplifier spacing vs. system length with different BER performance 53
Fig. 4.5 The mid-span detection in optical inline amplifier system 54
Fig. 4.6 The maximum amplifier spacing vs. system length with different number of detection 55
Fig. 4.7 Maximum amplifier spacing vs. system length of concatenated coding with different inner codes while the outer code is ITU RS (255,239) code 56
Table List
Table 2.1 The potential advantages and disadvantages of FEC as applied to lightwave systems [5]. 5
Table 2.2 The required BERin of RS (255,239) and Hamming code with different (n,k) when BERout=10-12 26
Table 3.1 The comparison between three coding schemes 35
Table 3.2 The parameters of shortened Hamming code in different coding schemes 36
Table 3.3 The required BERin of the outer RS (255,239) code concatenating Hamming code with different (n,k) and RS (255,239) when BERout=10-12 38
Table 3.4 The concatenated coding gain of outer RS (255,239) code 8concatenating inner WDM coding with different codeword length and serial RS (255,239) code when BERout=10-12 41
Table 3.5 Detailed list of three coding schemes for different data channels 43
Table 3.6 The required BERin and NE-CG of the outer RS (255,239) code concatenating inner WDM coding with different coding schemes and serial RS (255,239) when BERout=10-12 and 120 data channels 44
Table 4.1 Parameter definition 46
Table 4.2 System parameters 52
Table 4.3 System design with different system BER as system length=15000km 53
Table 4.4 System design with different number of detection as system length = 15000 km and system BER=10-12 56
Table 4.5 System design with different coding schemes as system length = 15000 km, system BER=10-12 and 120 data channels. 57

Reference
[1] W. D. Grover, “Forward error correction in dispersion-limited lightwave systems,” J. lightwave Technol., vol. 6, no. 5, pp. 643-654, May 1988.
[2] S. K. Shao and M. S. Kao, “WDM coding for high-capacity lightwave systems,” J. Lightwave Technol., vol. 12, no. 1, pp. 137-148, Jan. 1994.
[3] M. S. Kao, S. K. Shao, and H. Y. Chen, “WDM coding system with single parity-check channel,” J. Lightwave Technol., vol. 12, no. 10, pp. 1827-1834, Oct. 1994.
[4] S. Lin and D. J. Costello Jr., Error control coding: Fundamentals and Applications. Englewood Cliffs, NJ: Prentice-Hall, 1983.
[5] A. Robinson, “Experiences with forward error correction for optically amplified submarine systems,” International Transmission System, IEE Colloquium on, pp. 9/1 - 9/6, 1994
[6] International Telecommunication Union standardization sector (ITU-T), Series G: Transmission Systems and Media, Digital system and Network, G.975.
[7] H. Kidorf, N. Ramanujam, I. Hayee etc., “Performance improvement in high capacity, ultra-long distance, WDM systems using forward error correction codes,” Optical Fiber Communication Conference and Exhibit, 2000(OFC’2000), Paper ThS3.
[8] G. D. Forney, Concatenated codes. Cambridge, MA : M.I.T Press,1966
[9] H. Taga, H. Yamauchi, T. Inoue, and K. Goto, “Performance improvement of highly nonlinear long-distance optical fiber transmission system using novel high gain forward error correcting code,” Optical Fiber Communication Conference and Exhibit, 2001(OFC’2001), Vol. 2, Paper TuF3.
[10] O. Ait Sab, “FEC techniques in submarine transmission systems,” Optical Fiber Communication Conference and Exhibit, 2001(OFC’2001), Paper TuF1
[11] O. Ait Sab and V. Lemaire, “Block Turbo code performances for long-haul DWDM optical transmission systems,” Optical Fiber Communication Conference and Exhibit, 2000(OFC’2000), Paper ThS5
[12] C. R. Davidson, C. J. Chen, M. Nissov etc., “1800 Gb/s transmission of one hundred and eighty 10 Gb/s WDM channels over 7000 km using the full EDFA C-band,” Optical Fiber Communication Conference and Exhibit, 2000 (OFC’2000), Vol. 4, Paper PD25.
[13] J. B. Leroy, P. Marmier, C. Laval, and O. Gautheron, “32/spl times/10 Gbit/s transmission over 8000 km using hybrid Raman-erbium doped fiber optical amplifiers,” Optical Fiber Communication Conference, 2000 (OFC’2000), Vol. 1, Paper TuJ4.
[14] G. Vareille, F. Petel, R. Uhel etc., “340 Gb/s (34*10 Gb/s, 50 GHz space DWDM) straight line transmission over 6380 km with full system implementation assessment,” Optical Fiber Communication Conference, and the International Conference on Integrated Optics and Optical Fiber Communication (OFC/IOOC '99), Paper PD18.
[15] J.-X. Cai, M. Nissov, A.N. Pflipetskii etc., “2.4 Tb/s (120 /spl times/ 20 Gb/s) transmission over transoceanic distance using optimum FEC overhead and 48 % spectral efficiency,” Optical Fiber Communication Conference and Exhibit, 2001(OFC’2001), vol. 4, paper PD20, 2001.
[16] A. Puc, F. Kerfoot, A. Simons etc., “Concatenated FEC experiment over 5000 km long straight line WDM test bed,” Optical Fiber Communication Conference, and the International Conference on Integrated Optics and Optical Fiber Communication (OFC/IOOC '99), vol. 3, paper ThQ6, 1999.
[17] M. Tomizawa, Y. Yamabayashi, K. Murata etc., “Forward error correcting codes in synchronous fiber optic transmission systems,” J. lightwave Technol., vol. 15, no. 1, pp. 43-51, Jan. 1997.
[18] P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers fundamentals and Technology. San Diego: Academic Press, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top