跳到主要內容

臺灣博碩士論文加值系統

(3.90.139.113) 您好!臺灣時間:2022/01/16 18:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施博議
研究生(外文):Bour-Yi Sze
論文名稱:互補式傳導表面在CMOS上的分析與應用
論文名稱(外文):Analyses and Application of CMOS Complementary Conducting Surface
指導教授:莊晴光
指導教授(外文):Ching-Kuang C. Tzuang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
中文關鍵詞:行波放大器週期性波導結構CMOS 傳輸線損耗互補式傳導表面
外文關鍵詞:Traveling-wave amplifierPeriodical guiding structureCMOS line losscomplementary conducting surface
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
現階段行波放大器的設計多採用GaAs的技術。這篇論文主要的精神在於應用CMOS製程技術來設計行波放大器。
在本篇論文中,我們提出一種互補式的傳導表面應用於CMOS製程上以避免矽基板的損耗,並運用其慢波因子的特性來縮小電路面積。在這個設計中我們成功縮小了電路的面積,相較於Stanford group使用共平面槽線(coplanar stripline)所設計出來的行波放大器,我們的面積縮小了48%。這顆IC (二度空間陣列式行波放大器) 的面積為1815(um) x 724(um),它是目前世界上所發表的行波放大器中最小的一個。而這顆IC我們是使用台積電0.35um的CMOS製程。這顆行波放大器吸引人的地方在於架構簡單,能夠排列緊密,以及價格便宜,由得到的結果我們可以發現CMOS技術,在行波放大器設計中將會越來越具有潛力。

Nowadays, the design of the traveling-wave amplifier almost applies GaAs technology. This thesis aims to integrate the traveling-wave amplifier in CMOS technology to reduce the cost.
In this thesis, we propose a complementary conducting surface (CCS) applied in COMS technology to avoid the silicon substrate loss and reduce the chip size by SWF. In this design, we successfully reduce the chip size down to 48% compared to the design of Stanford group using convention coplanar striplines, the chip size is only 1815um x 724um which is the smallest one compared to traveling-wave amplifier design having been published in the world. The technology we applied TSMC 0.35um CMOS technology. This amplifier is attractive for its simplicity, compact size and low cost. The obtained performances give an insight into CMOS potentialities for traveling-wave amplifier.

Chapter1 Introduction
1.1 Motivation.............................................1
1.2 The organization of this thesis........................2
Chapter2 Basic Theory and Design Consideration of Traveling-wave Amplifier
2.1 Extracting small-signal model parameters of silicon MOSFET transistors............................................3
2.1.1 The Extrinsic Elements Extracting..................3
2.1.2 The Intrinsic Elements Extracting..................4
2.2 Theoretical considerations of Traveling-wave Amplifier..5
2.2.1 The Basic Configuration of a Microwave Distributed Amplifier.....................................................6
2.2.2 Characteristic impedance and propagation constant..7
2.2.3 Gain..............................................10
2.2.4 Gate and drain-line losses........................12
2.2.5 The optimum number of sections....................15
Chapter3 New Guiding Structure
3.1 Characteristic of New Guiding Structure..............16
3.2 IC Interconnect Transmission Parameter Extraction....20
3.3 Complementary Conducting Surface in Standard CMOS Technology...................................................22
3.3.1 Complementary Conducting Surface Design...........22
3.3.2 S-parameters Measurement Result...................25
3.3.3 Characteristic Impedance..........................26
3.3.4 Complex Propagation Constant......................27
3.3.5 Extracting the CCS Guiding Structure Parameters R L G C..........................................................28
3.3.6 An Equivalent Circuits for Complementary Conducting Surface......................................................29
3.4 Estimation............................................32
3.4.1 Effective Metal Thickness.........................32
3.4.2 Estimation the Resistance and Inductance..........34
3.5 Summary...............................................38
Chapter4 2-D Periodical Array Traveling-wave Amplifier
4.1 Introduction..........................................39
4.2 CCS Cell Design in the 0.35um Standard 1P4M CMOS Process......................................................40
4.2.1 Complementary Conducting Surface Design...........40
4.2.2 The Design of the Gate Line CCS Cell..............41
4.2.3 The Design of the Drain Line CCS Cell.............43
4.3 Circuit Design........................................45
4.3.1 Design Flow.......................................45
4.3.2 Analysis the Signal Propagated in the Traveling-wave Amplifier....................................................52
4.4 Simulation Results and Measurement....................58
Chapter5 Conclusion.........................................63

[1] Seonghearn Lee, H. K. Yu, C. S. Kim, J. G. Koo, K. S. Nam, “A novel approach to extracting small-signal model parameters of silicon MOSFET’s,” IEEE Microwave and Guided Wave Letter, vol. 7, pp. 75-77, Mar. 1997.
[2] D. Lovelace, J. Costa and N. Camilleri, ”Extracting small-signal model parameters of silicon MOSFET transistors.” IEEE MTT-S Int. Microwave Symp. Dig., pp. 865-868, 1994.
[3] Y. Ayasli, R. L. Mozzi, J. L. Vorhous, L. D. Reynolds, and R. A. Pucel, ”A Monolithic GaAs 1-13GHz Traveling-wave Amplifier,” IEEE Trans. Microwave Theory and Techniques, vol. MTT-30, pp. 976-981, July 1982.
[4] J. B. Beyer, S. N. Prasad, R. C. Becker, J. E. Nordman, and G. K. Hohenwarter, ”MESFET Distributed Amplifier Design Guidelines,” IEEE Trans. Microwave Theory and Techniques, vol. MTT-32, pp. 268-275, Mar. 1984.
[5] W. R. Eisenstadt and Y. Eo, ”S-parameters based IC interconnect transmission line characterization, ”IEEE Trans. Components, Hybrids, Manufac.Technol., vol. 15, pp. 483-490, Apr. 1992.
[6] T. Shibata and E. Sano, “Characterization of MIS structure coplanar transmission lines for investigation of signal propagation in integrated circuits,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 881—890, July 1990.
[7] J. N. Burghartz, D.C. Edelstein, K. A. Jenkiin, and Y. H. Kwark, “Spiral inductors and transmission lines in silicon technology using copper-dam-ascene interconnects and low-loss substrates,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1961—1968, Oct. 1997.
[8] B. Kleveland, T. H. Lee, and S. S. Wong, “50-GHz interconnect design in standard silicon technology,” in IEEE MTT Symp., vol. 3, 1998, pp. 1913-1916.
[9] Y.-C. Shih, “Broadband characterization of conductor-backed coplanar waveguide using accurate on-wave measurement techniques,” Microwave J., pp. 95-105, Apr. 1991.
[10] Bendik Kleveland, Carlos H. Diaz, Dieter Vook, Liam Madden, Thomas H. Lee, and S. Simon Wong “ Exploiting CMOS Reverse Interconnect Scaling in Multigigahertz Amplifier and Oscillator Design ,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 10, OCTOBER 2001.
[11] E. L. Ginzton, W. R. Hewlett, J. H. Jasberg, and J. D. Noe,” Distributed amplification,” Proc. IRE, pp.956-969, Aug. 1948.
[12] E. W. Strid and K. R. Gleason,”A DC-12GHz monolithic GaAs FET distributed amplifier,” IEEE Trans. Microwave Theory Tech., vol. MTT-30, pp. 969—975, July 1982.
[13] F. Schaer, ”Distributed mosfet amplifier using micrstrip, ”Int.J.Electron., vol.34, no6, pp.721-730, 1973.
[14] P. J. Sullivan, B. A. Zavier, and W. H. Ku, “An integrated CMOS distributed amplifier utilizing packaging inductance,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1969—1976, Oct. 1997.
[15] P. F. Chen, R. A. Johnson, M. Wetzel, P. R. de la Houssaye, G. A. Garcia, P. M.Asbeck, and I. Lagnado, “Silicon-on-sapphire MOSFET distributed amplifier with coplanar waveguide matching,” in IEEE Radio Frequency Integrated Circuits Symp., Baltimore, MD, 1998, pp. 161—164.
[16] B. Ballweber, R. Gupta, and D. J. Allstot, “Fully-integrated CMOS RF amplifiers,” in Proc. ISSCC, 1999, pp. 72—73.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top