跳到主要內容

臺灣博碩士論文加值系統

(54.161.24.9) 您好!臺灣時間:2022/01/17 11:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡文羿
研究生(外文):Wen-Yi Chien
論文名稱:互補式傳導表面之分析、設計與應用暨全平面式Ka-band次諧波混頻器
論文名稱(外文):Analyses, Design, and Applications of Complementary-Conducting-Surface (CCS) and All-Planar Ka-band Sub-Harmonic Mixer
指導教授:莊晴光
指導教授(外文):Ching-Kuang C. Tzuang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:49
中文關鍵詞:互補式傳導表面微帶線至波導模態轉換器
外文關鍵詞:Complementary-Conducting-Surface (CCS)Microstrip-to-waveguide mode converter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文的第一部份敘述一項正在申請專利中的技術之分析、設計與應用,此技術名為互補式傳導表面積體電路波導結構。互補式傳導表面是由一金屬平面與連接分支構成,同時互補式的蝕刻掉在金屬片下方的地面。在數值分析上,本文利用有限元素法計算此種結構,並且粹取出實際電路設計中需要的各項傳輸參數,如:特性阻抗及傳播常數。互補式傳導表面所擁有的低損耗、適當阻抗及單一平面特性的優點,使其極有潛力成為具有慢波特性的傳輸線。此外,藉由單位細胞元之間的二維週期式矩陣排列,可製造出緊密的互補式傳導表面傳輸線來降低積體電路中分散式元件所佔的面積。本文並說明了兩個在單晶積體電路上的應用。第一個應用是利用0.25-mm 1P5M CMOS製程,並根據一種新型的分散式電路設計方法來設計的全整合化之5.2 GHz振盪器。量測結果顯示輸出功率為—25.3 dBm,相位雜訊在距載波1 MHz處為—96.33 dBc/Hz。第二個應用是利用0.15-mm GaAs PHEMT製程設計的分散式放大器,其模擬出的頻寬從DC-60 GHz,小訊號增益為12 dB,此一電路所需的電壓為8 V,消耗的電流為89 mA,所佔據的面積為1.2 mm × 1.2 mm。上述的兩個應用成功地證明了利用互補式傳導表面技術來製造擁有良好特性、低成本及緊密特性的微波及毫米波單晶積體電路之潛力。
本篇論文的第二部份敘述一個利用新型平面式矩型波導濾波器製做的Ka-band次諧波混頻器。此電路工作在本地振盪源為15 GHz,中頻範圍為1.5 GHz到3 GHz,射頻範圍為31.5 GHz到33 GHz。本文在射頻端放置一平面式的矩型波導濾波器以抑制鏡像信號及提供良好的射頻埠至本地振盪源埠及中頻埠之隔絕性。此濾波器是利用傳統的多層印刷電路板製程製做,並且使用兩個平面式的微帶線至波導模態轉換器連接兩種傳輸結構。此一混波器在本地振盪源4 dBm的情形下,在所包含的頻帶中所測量出最大的上頻帶轉換損耗為11.4 dB,並且在中頻為2 GHz時,有一最小的轉換損耗為9.7 dB。此一混頻器所擁有具吸引力的特性證明了利用多層印刷電路板製程來製做全平面式、良好特性及低成本的毫米波模組之可行性。

Part I of this thesis describes the analyses, design, and applications of a patent pending technology called complementary-conducting-surface (CCS) integrated circuit guiding structure. The CCS structure is made of a metal pad with connecting branches while the ground plane underneath the metal pad is etched complementarily. This structure has been numerically computed by the finite-element method. The transmission parameters, such as characteristic impedance and propagation constant, have been extracted for the practical circuit design. The advantages of low loss, moderate impedance, and uniplanar features make the CCS structure a promising candidate as a slow-wave transmission line. Moreover, by the two-dimensional periodic array arrangement of the unit cells, a compact CCS transmission line can be constructed to reduce the dimension of distributed components in integrated circuits (ICs). Two applications on the monolithic ICs technology are addressed. The first is a fully integrated 5.2 GHz oscillator, which is based on a new distributed circuit design methodology, in a 0.25-mm 1P5M CMOS technology. Measured results reveal that an output power of —25.3 dBm with the phase noise of —96.33 dBc/Hz at 1 MHz offset from the carrier is achieved. The second is a DC-60 GHz 12 dB gain distributed amplifier in a 0.15-mm GaAs PHEMT technology. The circuit draws a current of 89 mA from a supply of 8 V and occupies an area of 1.2 mm × 1.2 mm. The above two applications successfully illustrate the potential of making high-performance, low-lost, and compact microwave and millimeter-wave monolithic ICs using the CCS technology.
Part II of this thesis describes a Ka-band sub-harmonic mixer utilizing a new planar rectangular waveguide filter. The circuit is designed to operate at an LO frequency of 15 GHz, an IF range of 1.5 GHz to 3 GHz, and an RF range of 31.5 GHz to 33 GHz. A planar waveguide filter is placed at the RF side of the mixer to reject the image signal and to provide good RF to LO/IF isolation. The proposed filter is fabricated using conventional multi-layer printed-circuit-board (PCB) fabrication process and employs two planar microstrip-to-waveguide mode converters between the two transmission structures. The measured maximum upper side band (USB) up-conversion loss of the mixer over the complete frequency range is 11.4 dB at an LO power of 4 dBm while the minimum USB up-conversion loss is 9.7 dB at an IF of 2 GHz. This attractive performance of the mixer demonstrates the feasibility of making all-planar, well-performing, and low-cost millimeter-wave modules via the multi-layer PCB process.

TABLE OF CONTENTS
ABSTRACT (Chinese)………………………………………..…...…….i
ABSTRACT (English)…………………………………..…………..…iii
ACKNOWLEDGEMENTS………………...….……………….………v
TABLE OF CONTENTS…………………………………………...….vi
LIST OF FIGURES………………………………….……………….viii
LIST OF TABLES………………………….…….…….……………….x
CHAPTER 1 Introduction………………………...…………………....1
1.1 Motivation…………………………………………….….………1
1.2 Organization of This Thesis……………………………………...4
PART I Analyses, Design, and Applications of Complementary-
Conducting-Surface (CCS)
CHAPTER 2 Guiding Characteristics of CCS……………..………....5
2.1 Complementary-Conducting-Surface Unit Cell…………..……..5
2.2 Principles and Operation.………………………………..……….7
2.3 Propagation Characteristics……………………………………...9
2.3.1 Transmission Parameters Extraction……………………...9
2.3.2 Convergence Analyses………………………………...…10
2.3.3 Dispersion Characteristics…………………………….…13
2.4 Design Considerations………………………………………….15
CHAPTER 3 Applications On the Monolithic Integrated Circuits...17
3.1 Fully Integrated 5.2 GHz CMOS Oscillator…………..………..17
3.1.1 Introduction………………………………………………17
3.1.2 CCS Design…………………………………………..…..18
3.1.3 Oscillator Design………………………………….……..21
3.1.4 Fabrication and Experimental Results……………….…..24
3.2 DC-60 GHz 12 dB Gain GaAs PHEMT Distributed Amplifier..27
3.2.1 Introduction………………………………………………27
3.2.2 CCS Design……………………………………………....28
3.2.3 Distributed Amplifier Theory………………………...….30
3.2.4 Circuit Design…………………………………………....32
3.2.5 Simulated Results and Layout………………………...…34
PART II All-Planar Ka-band Sub-Harmonic Mixer
CHAPTER 4 A Ka-band Sub-Harmonic Mixer Utilizing New Planar
Waveguide Filter……………………………………....37
4.1 Introduction……………………………………………………..37
4.2 Circuit Design…………………………………………………..38
4.3 Fabrication and Experimental Results………………….………41
CHAPTER 5 Conclusion……………………………………..……….44
REFERENCES..…………………………………………….…………46

REFERENCES
[1] D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. B, Condens. Matter, vol. 76, pp. 2408-2483, Apr. 1996.
[2] M. M. Sigalas, R. Biswas, and K. M. Ho, “Theoretical study of dipole antennas on photonic band-gap materials,” Microwave Opt. Technol. Lett., vol. 13, pp. 205-209, Nov. 1996.
[3] R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Photonic bound states in periodic dielectric materials,” Phys. Rev. B, Condens. Matter, vol. 44, pp. 13772-13774, Dec. 1991.
[4] F. R. Yang, K. P. Ma, Y. Qian, and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1509-1514, Aug. 1999.
[5] R. Coccioli, F. R. Yang, K. P. Ma, and T. Itoh, “Aperture-coupled patch antenna on UC-PBG substrate,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2123-2130, Nov. 1999.
[6] C. Yuen, C. Nishimoto, Y. C. Pao, M. Day, S. Bandy, and G. Zdasiuk, “High-gain, low-noise monolithic HEMT distributed amplifiers up to 60 GHz,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 2016-2017, Dec. 1990.
[7] S. Kimura, and Y. Imai, “0-40 GHz GaAs MESFET distributed baseband amplifier IC’s for high-speed optical transmission,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2076-2082, Nov. 1996.
[8] F. Kuroki, M. Sugioka, S. Matasukawa, K. Ikeda, and T. Yoneyama, “High-speed ASK transceiver based on the NRD-Guide technology at 60-GHz band,” IEEE Trans. Microwave Theory Tech., vol. 46, no. 6, pp. 806-810, June 1998.
[9] W. Menzel, and J. Kassner, “Novel filter and circuit design for a mm-wave communication module,” in 29th EUMC Conf., 1999, Munich.
[10] C. K. C. Tzuang, K. C. Chen, C. J. Lee, C. C. Ho, and H. S. Wu, “H-Plane mode conversion and application in printed microwave integrated circuit,” in Proc. Of EuMC2000, vol. 2, pp. 37-40, Oct. 2000.
[11] J. S. Ko, B. K. Kim, and K. Lee, “Simple modeling of coplanar waveguide on thick dielectric over lossy substrate,” IEEE Trans. Electron Devices, vol. 44, pp. 856-861, May 1997.
[12] A. Viviani, J. P. Raskin, D. Flandre, J. P. Collinge, and D. Vanhoenacker, “Extended study of crosstalk in SOI-SIMOX substrates,” in Proc. IEDM, 1995, pp. 713-716.
[13] B. Kleveland, C. H. Diaz, D. Vook, L. Madden, T. H. Lee, and S. S. Wong, “Exploiting CMOS reverse interconnect scaling in multigigahertz amplifier and oscillator design,” IEEE J. Solid-State Circuits, vol. 36, p. 1480-1488, Oct. 2001.
[14] W. R. Eisenstadt, and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. Components, Hybrids, Manufac. Technol., vol. 15, pp. 483-490, Apr. 1992.
[15] Y. Ayasli, J. L. Vorhous, R. L. Mozzi, and L. D. Reynolds, “Monolithic GaAs traveling-wave amplifier,” Electron. Lett., vol. 17, pp. 413-414, June 1981.
[16] A. Hajimiri, “Distributed integrated circuits: An alternative approach to high-frequency design,” IEEE Comm. Mag., pp. 168-173, Feb. 2002.
[17] C. Samori, S. Levantino, and V. Boccuzzi, “A —94dBc/Hz@100kHz, fully-integrated, 5-GHz, CMOS VCO with 18% tuning range for bluetooth applications,” in Proc. Custom Integrated Circuits Conf., 2001, pp. 201—204.
[18] A. H. Mostafa, M. N. El-Gamal, and R. A. Rafla, “A sub-1-V 4-GHz CMOS VCO and a 12.5-GHz oscillator for low-voltage and high-frequency applications,” IEEE Trans. On Circuits and Systems─II: Analog and Digital Signal Processing, vol. 48, pp.919-926, Oct. 2001.
[19] J. D. V. D. Tang, D. Kasperkovitz, and A. V. Roermund, “A 9.8—11.5-GHz quadrature ring oscillator for optical receivers,” IEEE J. Solid-State Circuits, vol. 37, pp. 438—442, Mar. 2002.
[20] Y. Yano, T. Ono, K. Fukuchi, T. Ito, H. Yamazaki, M. Yamaguchi, and K. Emura, “2.6 Terabit/s WDM transmission experiment using optical duobinary coding,” in ECOC’96, 1996, Postdeadline Papers ThB. 3.1.
[21] S. Kuwano, N. Takachio, K. Iwashita, T. Otsuji, Y. Imai, T. Enoki, K. Yoshino, and K. Wakita, “160-Gbit/s (4-ch x 40-Gbit/s electrically multiplexed data) WDM transmission over 320-km dispersion-shifted fiber,” in OFC’96, 1996, Postdeadline Papers PD25.
[22] I. Darwazeh, P. Moreira, A. Borjak, and J. O’Reilly, “A distributed optical receiver preamplifer with unequal gate/drain impedances,” in 1995 IEEE MMWMC Symp. Dig., Orlando, FL, pp. 199-202.
[23] S. Kimura, Y. Imai, and Y. Miyamoto, “Novel distributed baseband amplifying techniques for 40-Gbit/s optical communications,” in 1995 IEEE GaAs IC Symp. Dig., San Diego, CA, pp. 193-196.
[24] H. Shigematsu, M. Sato, T. Suzuki, T. Takahashi, K. Imanishi, N. Hara, H. Ohnishi, and Y. Watanabe, “A 49-GHz preamplifier with a transimpedance gain of 50 dBW Using InP HEMTs,” IEEE J. Solid-State Circuits, vol. 9, p. 1309-1313, Sept. 2001.
[25] S. Kimura, Y. Imai, S. Yamaguchi, K. Onodera, and H. Kikuchi, “Artificial-line-division distributed ICs with 0.1-mm-gate-Length GaAs MESFET and three-dimensional transmission lines,” IEEE Trans. Microwave Theory Tech., vol. 50, p. 1603-1608, June 2002.
[26] R. E. Leoni III, S. J. Lichwala, J. G. Hunt, C. S. Whelan, P. F. Marsh, W. E. Hoke, and T. E. Kazior, “A DC-45 GHz metamorphic HEMT traveling wave amplifier,” in 2001 IEEE GaAs IC Symp. Dig., pp. 133-136.
[27] S. Deibele and J. B. Beyer, “Attenuation compensation in distributed amplifier design,” IEEE Trans. Microwave Theory Tech., vol. 37, p. 1425-1433, Sept. 1989.
[28] F. Rose. (2001, Nov.). RMDA00400 OC768 Modulator Driver MMIC, Raytheon Corp., MA. [Online]. Available: http://www.raytheon.com/micro.
[29] M. Cohn, J. E. Degenford and B. A. Newman, “Harmonic mixing with antiparallel diode pair,” IEEE Trans. Microwave Theory Tech., vol. 23, no. 8, pp. 667-673, Aug. 1975.
[30] J. Matreci and F. K. David, “Unbiased subharmonic mixer for millimeter wave spectrum analyzers,” IEEE MTT-S Int. Symp. Dig., pp.130-132, 1983.
[31] N. Kaneda, Y. Qian, and T. Itoh, “A broad-band microstrip-to-waveguide transition using quasi-yagi antenna,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 12, pp. 2562-2567, Dec. 1999.
[32] Y. C. Leong and S. Weinreb, “Full band waveguide-to-microstrip probe transitions,” IEEE MTT-S Int. Symp. Dig., vol. 4, Anaheim, pp. 1435-1438, 1999.
[33] C. J. Lee, H. S. Wu and C. K. C. Tzuang, “A broadband microstrip-to-waveguide transition using planar technique,” in Proc. of APMC2001, vol. 2, pp. 543-546, Dec. 2001.
[34] Q. Zhang and T. Itoh, “Computer-aided design of evanescent-mode waveguide filter with nontouching E-plane fines,” IEEE Trans. Microwave Theory Tech., vol. 36, pp. 404-412, Feb. 1988.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文