(3.232.129.123) 您好!臺灣時間:2021/03/04 18:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:任宇駿
研究生(外文):Yu-Jiun Ren
論文名稱:發展混合式無線電空-時通道模型與探討巨細胞環境下之散射群集效應
論文名稱(外文):Development of Hybrid Spatio-Temporl Radio Channel Model and Scattering Cluster Model for Macrocellular Environments
指導教授:唐震寰唐震寰引用關係
指導教授(外文):Jenn-Hwan Tarng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
中文關鍵詞:空-時通道巨細胞散射效應散射體群集
外文關鍵詞:spatio-temporal radio channelmacrocellscattering effectscatterer cluster
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本論文建構一個新的混合式無線電空-時通道模型來探討巨細胞環境下的散射群集效應。該混合模型結合適應環境性傳播模型(site-specific model)以及幾何分佈式統計模型。適應環境性傳播模型能夠預估無線電波在巨細胞環境中的主要傳播機制;幾何分佈式統計模型則可描述巨細胞環境中的隨機散射體效應。
本論文採用先進的向量通道響應系統於台北市都會區巨細胞環境下,進行通道響應及特徵之實地量測,分析無線電波在空間與時間之分佈特性。在分析巨細胞的脈衝響應量測數據中,發現來自各主要反射點或繞射點之接收信號,大多以群集式脈衝響應顯示。於是論文中以“等效散射區”代表有效反射或繞射區域,並在該區以隨機散射體分佈模型,描述該區所產生之散射群集效應。
本論文針對實際環境並利用量測統計結果,擬定選取等效散射區與決定等效散射體數的方法,藉由等效散射區與等效散射體有效地量化巨細胞傳播環境中的散射群集效應,混和模型能夠正確地預估無線電波在空間與時間之分佈特徵。吾人將以抵達時間、抵達角度、角度擴展以及時間擴展之量測值驗證混和模型的預估效能。
This paper presents a new hybrid spatio-temporal radio channel model, which can characterize both the space-time property and the scatterer cluster effect well for macrocellular radio channel in urban environment. The hybrid model combines a site-specific model with a statistical model. The former model employs a deterministic approach to describe the direct wave, specular reflection wave and diffraction wave. The latter one employs a statistical approach to describe the scattered or diffused fields, which is due to the local scatterers around the mobile station, rough surface of dominant buildings, and multiple scattering effect of corners/edges of dominant buildings. It is found that the scattering or the diffused fields from each dominant building are arrived in groups in space-time domain, which can be modeled by applying the scatterer cluster. Here, a scatterer cluster is described by introducing randomly positioned scatterers in the associated “effective scattering zone”, which represents the effective diffused-reflection or -diffraction area of the buildings. The rules to determine the scattering zone size and the scatterer number are investigated by measurement-based method. By comparing the computed time of arrival, angle of arrival, r.m.s. angle spread and r.m.s. delay spread with the measured one, the hybrid model has been proved to be an effective and accurate spatio-temporal radio channel model.
Abstract(Chinese)……………………………………………………………i
Abstract(English)…………………………………………………………ii
Acknowledgement……………………………………………………………iii
Contents………………………………………………………………………iv
List of Figures………………………………………………………………v
List of Tables……………………………………………………………viii
Chapter 1 Introduction……………………………………………………1
Chapter 2 Spatio-Temporal Radio Channel Model……………………4
2.1 Site-Specific Deterministic Model………………………………5
2.2 Geometrically Based Statistical Model…………………………7
Chapter 3 Measurement Procedure and Data Analysis………………14
3.1 Measurement Setup and Environment………………………………14
3.1.1 Measurement Setup…………………………………………………14
3.1.2 Measurement Sites…………………………………………………15
3.1.3 Measurement Result………………………………………………16
3.2 Validation of The Deterministic Model…………………………18
3.3 Analysis of Scattering Cluster Effect…………………………21
Chapter 4 Hybrid Spatio-Temporal Radio Channel and Scattering Cluster Modelings…………………………………………………………36
4.1 Hybrid Spatio-Temporal Channel Modeling………………………36
4.2 Scattering Cluster Modeling………………………………………38
4.3 Validation of Hybrid Model…………………………………………40
4.3.1 r.m.s. Delay Spread and r.m.s. Angle Spread………………40
4.3.2 Correlation Coefficient of r.m.s. Angle and Delay Spreads………………………………………………………………………44
Chapter 5 Conclusion………………………………………………………56
Appendix
A. The 2D Site-Specific Model…………………………………………58
B. The 3D Site-Specific Model…………………………………………63
References……………………………………………………………………76
[1] R. B. Ertel, P. Cardieri, T. S. Rappaport, and J. H. Reed, “Overview of spatial channel models for antenna array communication systems,” IEEE Personal Communications, pp.10-22, February 1998.
[2] W. C. Y. Lee, “Lee’s Model,” IEEE, PacTel Corporation Walnut Creek, CA.
[3] R. B. Ertel, “Statistical analysis of the geometrically based single bounce channel models,” unpublished notes, May 1997.
[4] S. P. Stapleton, X. Carbo, and T. Mckeen, “Spatial channel simulator for phased arrays,” IEEE VTC, pp.1789-1792, 1994.
[5] P. Zetterberg and B. Ottersten, “The spectrum efficiency of a basestation antenna array system for spatially selective transmission,” IEEE VTC, 1994.
[6] P. Zetterberg and P. L. Espensen, “A downlink beam steering technique for GSM/ DCS1800/PCS1900,” IEEE PIMRC, Taipei, Taiwan, October 1996.
[7] P. Zetterberg and P. L. Espensen, and P. Mogensen, “Propagation, beamsteering and uplink combining algorithms for cellular systems,” ACTS Mobile Commun. Summit, Granada, Spain, November 1996.
[8] U. Martin and M. Grigat, “A statistical simulation model for the directional mobile radio channel and its configuration,” Proc. 4th IEEE international symposium on spread spectrum techniques and applications, pp.86-90, 1996.
[9] P. Zetterberg, “Mobile communication with base station antenna arrays propagation modeling and system capacity,” Tech. Rep., Royal Inst. Technology, January 1995.
[10] G. G. Raleigh and A. Paulraj, “Time varying vector channel estimation for adaptive spatial equalization,” Proc. IEEE Globecom., pp.218-224, 1995.
[11] O. Norklit and J. B. Anderson, “Mobile radio environments and adaptive arrays,” Proc. IEEE PIMRC, pp.725-728, 1994.
[12] J. Fuhl, A. F. Molisch, E. Bonek, “Unified Channel Model for Mobile Radio Systems with Smart Antenna, “ IEE Proc. -Radar, Sonar Navig. Vol. 145, No. 1, Feb. 1998.
[13] R. J. Piechocki, J. P. McGeehan, and G.V. Tsoulos, “A new stochastic spatio-temporal propagation model (SSTPM) for mobile communications with antenna arrays,” IEEE Trans. Commun., Vol. 49, No. 5, pp.855-862, May 2001.
[14] G. Liang and H. L. Bertoni, “A new approach to 3-D ray tracing for propagation prediction in cities,” IEEE Trans. Antennas Propagat., Vol. 46, No. 6, pp.853-863, June 1998.
[15] T. Kurner, D. J. Cochom, and W. Wiesbeck, “Concepts and results for 3D digital terrain- based wave propagation models: an overview,” IEEE J. Select. Areas Commun., Vol. 11, No. 7, pp.1002-1012, September 1993.
[16] E. K. Tameh, A. R. Nix, and M. A. Beach, “A 3-D integrated macro and microcellular propagation model, based on the use of photogrammetric terrain and building data,” IEEE VTC, Vol. 3, pp.1957-1961, 1997.
[17] T. S. Rappaport, “Wireless personal communications: trends and challenges,” IEEE AP Mag., Vol. 33, No. 5, pp19-29, 1991.
[18] T. S. Rappaport, S. Y. Seidel, and K. R. Schaubach, “Site-specific propagation for PCS system design,” in Wireless personal communications, M. J. Feuerstein, T. S. Rappaport, eds., Boston: Kluwer academic publishers, pp.281-315, 1993.
[19] S. R. Saunders and B. G. Evans, “A physical model of shadowing probability for land-mobile satellite systems,” Electronics Letters, 33(15), pp.1548-1549, 1996.
[20] E. Lutz, “A Markov model for correlated land mobile satellite channels,” Int. J. Satellite Communications, 14, 99.333-339, 1996.
[21] G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. on Vehicular Technology, Vol. VT-21, pp. 1-9, February 1972.
[22] Joseph C. Liberti, JR., T. S. Rappaport, Smart Antennas for Wireless Communications: IS-95 and Third Generation CDMA Applications, Prentice Hall PTR, New Jersey, 1999.
[23] M. Larsson, “Spatio-temporal channel measurements at 1800 MHz for adaptive antennas,” Proc. IEEE VTC, pp.376-380, 1999.
[24] J. B. Andersen, “Transition zone diffraction by multiple edges,” IEE Proc. Microwave Antennas Propagation, Vol. 141, No. 5, pp.382-384, October 1994.
[25] M. Larsson, “Spatio-temporal channel measurements at 1800 MHz for adaptive antennas,” Proc. IEEE VTC, pp.376-380, 1999.
[26] M. Nilsson, B. Lindmark, M. Ahlberg, M. Larsson, and C. Beckman, “Measurements of the spatio-temporal polarization characteristics of a radio channel,” IEEE VTC, pp.386-391, 1999.
[27] A. Kuchar, J. P. Rossi, and E. Bonek, “Directional macro-cell channel characterization from urban measurements,” IEEE Trans. Antennas Propagat., Vol. 48, pp. 137-146, February 2000.
[28] U. Martin, “Spatio-temporal radio channel characteristics in urban macrocells,” Proc.-Radar, Sonar Navig., Vol. 145, No. 1, pp.42-49, February 1998.
[29] R. S. Thoma, D. Hampicke, A. Richter, G. Sommerkorn, A. Schneider, U. Trautwein, and W. Wirnitzer, “Identification of time-variant directional mobile radio channels,” IEEE Trans. Instrum. Meas. Technol., Vol. 49, No. 2, pp.357-364, April 2000.
[30] H. Krim and M. Viberg, “Two decades of array signal processing research,” IEEE Signal Processing Mag. (Special Issue on Array Processing), Vol. 13, July 1996.
[31] M. J. Mughal, A. M. Street, and C. C. Constantinou, “Detailed radio imaging of buildings at 2.4 GHz,” IEEE VTC, pp.57-63, 2000.
[32] W. C. Y. Lee, “Applying the intelligent cell concept to PCS,” IEEE Trans. Veh. Technol., 1994.
[33] K. I. Pedersen, P. E. Mogensen, and B. H. Fleury, “Power azimuth spectrum in outdoor environments,” Electronics Letters, Vol. 33, August 1997.
[34] Theodore S. Rappaport, “Wireless Communications Principles and Practice,” Prentice-Hall, Inc., Chapter 4, 1996.
[35] T. S. Rapport, S. Y. Seidel, R. Singh, “900-MHz Multipath Propagation Measurements for U.S. Digital Radiotelephone, ”IEEE Trans. Veh. Technol., Vol 39, No. 2, May 1990.
[36] J. Van Rees, “Measurements of impulse response of a wideband radio channel at 910 MHz from a moving vehicle,” IEEE Trans., Veh. Technol., Vol. 36, pp. 1-6, February 1987.
[37] K. I. Pedersen, P. E. Mogensen, and B. H. Fleury, “A stochastic model of the temporal and azimuthal dispersion seen at the base station in outdoor propagation environments,” IEEE Trans. Veh. Techvol., Vol. 49, No. 2, pp.437-447, March 2000.
[38] L. W. Wiesbeck and Krank, “A versatile wave propagation model for the VHF/UHF range considering three-dimensional terrain,” IEEE Trans. Antennas Propagat., Vol. 40, pp.1121-1131, Oct. 1992.
[39] R. G. Kouyoumjian and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, pp.1448-1461, 1974.
[40] O. Landron, M. J. Feuerstein, and T. S. Rappaport , “A comparision of theoretical and empirical reflection coefficients for typical exterior wall surfaces in a mobile radio environment”, IEEE Trans. Antennas Propagat., Vol. 44, No.3, pp.341-350, March 1996.
[41] T. S. Rappaport, Wireless Communication Principles & Practice, Chapters 3 and 4.
[42] M. J. Feuerstein, K. L. Blackard, T. S. Rappapor, “Pathloss, delay Spread, and outage models as functions of antenna height for microcellular system design,”IEEE Trans. Veh. Technol., Vol. 43, No.3, August 1994.
[43] D. A. McNamara, C. W. I. Pistorius, and J. A. G. Malherbe, “Introduction to the uniform geometrical theory of diffraction,” Artech House Boston. London, 1990, Chapter 6.
[44] Constantine A. Balanis, Advanced Engineering Electro-magnetics, Wiley, New York, 1989, Chapter 13.
[45] G. J. Luebbers, “Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation,” IEEE Trans. Antennas and Propagat., Vol. 32, No. 1, pp.70-76, January 1984.
[46] C. K. Chen, “Modeling of Mobile Radio Propagation in Urban Environments,” National Chiao Tung Universuty, Taiwan, R.O.C., June 1997.
[47] R. J. Luebbers, “A heuristic UTD slope diffraction coefficient for rough lossy wedges,” IEEE Trans., Vol. 37, pp.206-211, February 1989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 尤新輝,1992。從茶葉原料探討茶飲料的品質。食品工業,24(12):16-27。
2. 錢阜甯,1998。罐裝茶飲料之最適化探討。食品工業月刊,30(10):36-47。
3. 錢阜甯,1998。罐裝茶飲料之最適化探討。食品工業月刊,30(10):36-47。
4. 廖慶樑,2000。茶葉中兒茶素的用途與萃取製程。食品資訊,6:22-25。
5. 廖慶樑,2000。茶葉中兒茶素的用途與萃取製程。食品資訊,6:22-25。
6. 王美苓、李敏雄。1995。飲料中咖啡因之簡易快速分析。中國農業化學會誌,33(1):114-123。
7. 黃建才、陳介甫、蔡東湖,1999。茶葉及咖啡中咖啡因之含量分析。中醫藥雜誌,10(2):135-141。
8. 許順吉。1996。毛細管電泳技術及其在中藥分析上的應用。化學,54(3):55-63。
9. 許順吉。1996。毛細管電泳技術及其在中藥分析上的應用。化學,54(3):55-63。
10. 黃建才、陳介甫、蔡東湖,1999。茶葉及咖啡中咖啡因之含量分析。中醫藥雜誌,10(2):135-141。
11. 石正玲,朱延和。2001。毛細管電泳於生物分子辯識及組合化學之應用。化學,59(3):391-398。
12. 石正玲,朱延和。2001。毛細管電泳於生物分子辯識及組合化學之應用。化學,59(3):391-398。
13. 黃建才、陳介甫、蔡東湖,1999。茶葉及咖啡中咖啡因之含量分析。中醫藥雜誌,10(2):135-141。
14. 黃建才、陳介甫、蔡東湖,1999。茶葉及咖啡中咖啡因之含量分析。中醫藥雜誌,10(2):135-141。
15. 尤新輝,1992。從茶葉原料探討茶飲料的品質。食品工業,24(12):16-27。
 
系統版面圖檔 系統版面圖檔