跳到主要內容

臺灣博碩士論文加值系統

(54.80.249.22) 您好!臺灣時間:2022/01/20 06:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴志豪
研究生(外文):Chi-Hao Lai
論文名稱:單平面式W頻段混波器與倍頻器
論文名稱(外文):Uniplanar W-band Mixers abd Doubler
指導教授:張志揚張志揚引用關係
指導教授(外文):Chi-Yang Chang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:54
中文關鍵詞:單平面混波器倍頻器
外文關鍵詞:UniplanarMixerDoubler
相關次數:
  • 被引用被引用:0
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本報告提出一些使用於W頻段的混頻電路與倍頻電路,W頻段的混頻器依所使用的180度混成器(180o hybrid coupler)的不同分為三種,其一為使用全由有限寬地面共平面波導為結構的岔路環耦合器(rat-race ring coupler)所製成的混波器,其轉頻耗損在75到95 GHz頻率範圍內平均約為11dB,其二為使用有限寬地面共平面波導轉換為共平面帶線結構的岔路環耦合器所製成的混波器,其轉頻耗損在75到95 GHz之間平均約為16dB;其三為使用有限寬地面共平面波導為結構的超寬頻岔路環耦合器,主要是利用一個將共平面波導的訊號與地線作扭轉所製成的相反器來代替岔路環的四分之三波長線段來達到寬頻效果,用此耦合器製成的混頻電路在沒有偏壓的狀況之下於20到100GHz之間約有平均10dB的轉頻耗損,加偏壓之後則有平均11dB的轉頻耗損,且最低可達8dB的損耗。若將此超寬頻耦合器應用在次諧波混頻器上,則在55到98GHz之間有平均15 dB的轉頻損耗。W頻段倍頻器則使用兩個反相二極體加上一寬頻的平衡製非平衡端轉換器(balun)電路來製作,其轉頻耗損在W頻段75GHz~95GHz之間平均約為17dB且頻率響應十分平坦。此外,本報告也描述混頻器與倍頻器所使用的一些電路,包括180度相位產生器與直流阻絕電路的設計原理與方法。其量測結果也會在報告中描述。

Abstract
This thesis presents some mixer and doubler circuits which is applied in the W-band. According to the coupler used in the mixers, we fabricate three types of mixer. First type is the finite ground coplanar waveguide (FCPW) rat-race ring mixer. The conversion loss of this mixer is around 12dB in 75GHz to 95GHz frequency range. Second type is the finite ground coplanar waveguide to coplanar strip(FCPW-CPS) rat-race ring mixer. The conversion loss of this mixer is around 16 dB from 75 GHz to 95 GHz. Third type is the broadband magic-T mixer. The magic-T coupler is fabricated in FCPW structure and applies a twist-line phase inverter to replace the half-wave-length phase inverter of the conventional rat-race ring in order to get broadband response. This type of mixer can get 11 dB conversion loss from 20GHz to 100GHz without DC-bias. If the DC voltage is applied on the diodes, this mixer can get typically 12dB conversion loss (minimum value is 8dB) from 75GHz to 100GHz. W-band frequency doubler comprises 2 anti-parallel Schottky diodes and an ultra-broadband CPW to CPS balun. The conversion loss of this doubler is around 17dB from 75GHz to 95GHz with flat frequency response. This thesis also describes the circuit design theory of the 180o coupler, balun, and DC-blocking circuits. The measured results will be shown in the following sections.

Contents
Abstract………………………………………………………………………………...i
Abstract (Chinese)……...……………………………………………………………...ii
Acknowledgments…………………………………………………………………….iii
Contents……………………………………………………………………………….iv
List of Tables……..………………………...…………………………………………vi
List of Figures…………….….…………...……………………………...…..………vii
Chap1 Introduction…………………………………………………………………….1
Chap2 Singly Balanced Mixer………………………...………………………………3
2-1 Theory of Singly Balanced Mixer…………...……………………………...3
2-2 Theory of Singly Balanced Sub-harmonic Mixer……………………..……6
Chap3 Singly Balanced Mixer Circuits……………………..…………………………9
3-1 FCPW Rat-race Ring Coupler…………………….……………………...9
3-2 FCPW-CPS Rat-race Ring Coupler……………………………………….14
3-3 Singly Balanced Rat-race Ring Mixer Design…………………………….16
3-3-1 CPW Series Stub for DC-block……………………………………..16
3-3-2 FCPW Singly Balanced Rat-race Ring Mixer………………………19
3-3-3 FCPW-CPS Singly Balanced Rat-race Ring Mixer………………...24
3-4 FCPW Ultra-broadband Magic-T……………………………………...….25
3-5 FCPW Singly Balanced Magic-T Mixer…………………….……..……...36
3-6 FCPW Singly Balanced Magic-T Sub-harmonic Mixer…….………….…42
Chap4 Anti-parallel Diode Pair Frequency Doubler……………….…….…………..44
4-1 Schottky Diode Doubler Operating Function………….………………….44
4-2 CPW-CPS Broad Band Balun………………………..…………………...46
4-3 Broad Band Doubler Circuit………………………….…………………...51
Chap5 Conclusion……………………………………………………………………54
Reference……………………………………………………………………………..55
List of Tables
Table 3-1 Physical dimensions of the rat-race ring coupler…………………………10
Table 3-2 Physical dimension of the FCPW-CPS rat-race ring……………………..15
Table 3-3 Physical dimension of the broadband magic-T coupler…………………..30
List of Figures
Fig. 1-1 W-band mixer measuring environment………………………………………2
Fig. 2-1 Relationship between voltage and current on a diode…..……………………4
Fig. 2-2(a) Singly balanced mixer architecture……...………………………………...6
Fig. 2-2(b) Diode current configuration…………………………...…………………..6
Fig. 2-3(a) Singly balanced sub-harmonic mixer architecture…………………...……8
Fig. 2-3(b) Diode current configuration………………………………...……………..8
Fig. 3-1 FCPW rat race ring circuit photograph……………………………………...10
Fig. 3-2 EM simulation results of FCPW rat-race ring coupler……………………...11
Fig. 3-3 Measuring results of FCPW rat-race ring coupler…………………………..12
Fig. 3-4 Transmission line model with parasitic effect of rat-race ring coupler…......12
Fig. 3-5 Simulation results with parasitic effect of rat-race ring coupler…………….13
Fig. 3-6 Phase difference between outputs of the FCPW rat-race ring………………14
Fig. 3-7 Photograph of the FCPW-CPS rat-race ring………………………………...15
Fig. 3-8(a) Measuring results of the FCPW-CPS rat-race ring…………...………….16
Fig. 3-8(a) Measuring results of the FCPW-CPS rat-race ring (phase difference)......16
Fig. 3-9(a) CPW series stub circuit photograph……………………………………...18
Fig. 3-9(b) Transmission line model of the series stub………...…………………….18
Fig. 3-10 Measured results of the open ended series stub……………………...…….19
Fig. 3-11 W-band singly balanced ring mixer photograph…………………………...20
Fig. 3-12 W-band singly balanced ring mixer circuit configuration…………………20
Fig. 3-13 Conversion loss vs. RF frequency...……………………………………….22
Fig. 3-14 Conversion loss VS IF frequency……………………...…………………..22
Fig. 3-15 Conversion loss vs. RF frequency (fRF > fLO)……...………………………23
Fig. 3-16 Conversion loss vs. RF frequency (fRF < fLO)……...………………………23
Fig. 3-17 Photograph of the FCPW-CPS rat-race ring mixer……...………………...24
Fig. 3-18 Measured conversion loss of the FCPW-CPS rat-race ring mixer……...…24
Fig. 3-19 Photograph of the ultra-broadband magic-T……………………………….26
Fig. 3-20 Configuration of the ultra-broadband magic-T…………………………….26
Fig. 3-21(a) Even mode equivalent circuit……...……………………………………28
Fig. 3-21(b) Odd mode equivalent circuit………...………………………………….28
Fig. 3-22 EM simulation results of the magic-T (input from port1)…………………30
Fig. 3-23 EM simulation results of the magic-T (input from port2)…………………31
Fig. 3-24 Ideal transmission line model simulation results of the magic-T………….31
Fig. 3-25 Measuring results of the insertion loss (input from port1)…...……………32
Fig. 3-26 Measuring results of the insertion loss (input from port2)…...……………33
Fig. 3-27 Measuring results of the return loss and isolation………...……………….33
Fig. 3-28 Transmission line model of magic-T with parasitic effect…...……………34
Fig. 3-29 Simulation results of the circuit model with parasitic effect………………34
Fig. 3-30 Parasitic effect caused by bond wires……………………………………...35
Fig. 3-31 Phase difference (input from port1 and port2)………………………….…35
Fig. 3-32 Phase difference (input from port3 and port4)…...………………………..36
Fig. 3-33 Photograph of the magic-T mixer………………………………………….37
Fig. 3-34 Conversion loss of the magic-T mixer (RF freq > LO freq)……………….38
Fig. 3-35 Conversion loss of the magic-T mixer (RF freq < LO freq)……………….38
Fig. 3-36 IF bandwidth of the magic-T mixer………………………………………..39
Fig. 3-37 Photograph of the biased magic-T mixer…………………………………..40
Fig. 3-38 Configuration of the biased magic-T mixer………………………………..40
Fig. 3-39 Measured conversion loss of the biased magic-T mixer…...……………...41
Fig. 3-40 IF bandwidth of the biased magic-T mixer………………………………...41
Fig. 3-41 Conversion loss of the magic-T sub-harmonic mixer…………………...…43
Fig. 3-42 IF bandwidth of the magic-T sub-harmonic mixer……………….………..43
Fig. 4-1 Doubler architecture………...………………………………………………44
Fig. 4-2 Diode current configuration of a doubler……………...…………………....45
Fig. 4-3 Equivalent circuit of the Marchand balun………...………………...………47
Fig. 4-4 Marchand balun back to back structure……………………………………..48
Fig. 4-5 Γ(Θ) of the taper line……………………………………………………..49
Fig. 4-6 Photograph of the back to back balun……………………………………….50
Fig. 4-7 W-band back to back measuring results of the balun……………………….51
Fig. 4-8 Photograph of the frequency doubler………...……………………………..52
Fig. 4-9 Close look of the diodes connecting junction………………………...……..52
Fig. 4-10 Measured conversion loss of the frequency doubler…………...………….53

References
[1] David Pozar, “Microwave Engineering,” Wiley.
[2] B. R. Heimer, L. Fan, and K. Chang, “Uniplanar Hybrid Couplers Using Asymmetrical Coplanar Striplines,” IEEE Trans. Microwave Theory Tech., Vol. 45, No.12, pp. 2234-2240, Dec. 1997.
[3] I. Huynen, G. Dambrine, “A Novel CPW DC-Blocking Topology with Improved Matching at W-Band,” IEEE Microwave and Guided Wave Letters, Vol. 8, No.4, pp. 149-151, April. 1998.
[4] C. Y. Chang, C. C. Yang, “A Novel Broad-Band Chebyshev-Response Rat-Race Ring Coupler,” IEEE Trans. Microwave Theory Tech., Vol. 47, No.4, pp. 455-462, April. 1999.
[5] C. Y. Chang, C. C. Yang, “A Multioctave Bandwidth Rat-Race Singly Balanced Mixer,” IEEE Microwave and Guided Wave Letters, Vol. 9, No. 1, pp. 37-39, Jan. 1999
[6] V. Trifunovic, B. Jokanovic, “Review of Printed Marchand and Double Y Baluns: Characteristics and Application,” IEEE Trans. Microwave Theory Tech., Vol. 42, No.8, pp. 1454-1462, Aug. 1994.
[7] K. Hettak, N. Dib, A. Sheta, A. Omar, G. Delisle, M. Stubbs, and S. Toutain, “New Miniature Broad-Band CPW to Slotline Transitions,” IEEE Trans. Microwave Theory Tech., Vol. 48, No.1, pp. 138-145, Jan. 2000.
[8] H. K. Chiou, C. Y. Chang, and H. H. Lin, “Balun Design for Uniplanar Broad-band Double Balanced Mixer,” Electronics Letters, Vol.31, No.24, pp.2113-2114, Nov. 1995.
[9] M. S. Chain, C. Y. Chang, “Uniplanar Type Ka Band Frequency Doubler.”
[10] T. Hirota, A. Minakawa, and M. Muraguchi, “Reduced-Size Branch-Line and Rat-race Hybrids for Uniplanar MMIC’s,” IEEE Trans. Microwave Theory Tech., Vol. 38, No.3, pp. 270-275, March. 1990.
[11] C. H. Ho, Lu Fan, and K. Chang, “New Uniplanar Coplanar Waveguide Hybrid-Ring Couplers and Magic-T’s,” IEEE Trans. Microwave Theory Tech., Vol. 42, No.12, pp. 2440-2447, Dec. 1994.
[12] G. E. Ponchak, Linda P. B. Katechi, “Open- and Short-Circuit Terminated Series Stubs in Finite-Width Coplanar Waveguide on Silicon,” IEEE Trans. Microwave Theory Tech., Vol. 45, No.6, pp. 970-975, June. 1997.
[13] Arvind K. Sharma, Huei Wang, “Experimental Models of Series and Shunt Elements in Coplanar MMICs,” IEEE MTT-S Digest, pp.1349-1352, 1992
[14] Bernd Schuppert, “Microstrip/Slotline Transitions: Modeling and Experimental Investigation,” IEEE Trans. Microwave Theory Tech., Vol. 36, No.8, pp. 1272-1282, June. 1997.
[15] Stephen A. Maas, “Microwave Mixers Second Edition,” Artech House.
[16] Marek T. Faber, J. Chramiec, Miroslaw E. Adamski, ”Microwave and Millimeter-wave Diode Frequency Multipliers,” Artech House.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top