跳到主要內容

臺灣博碩士論文加值系統

(54.83.119.159) 您好!臺灣時間:2022/01/17 08:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李文昶
研究生(外文):Wen-Chang Lee
論文名稱:載波調變頻率合成器之設計與分析暨平面化實現之15/30GHz震盪器/倍頻器
論文名稱(外文):Analysis and Design of Carrier-Modulated Frequency Synthesizer and Planar Realization of 15/30 GHz Oscillator/Doubler
指導教授:莊晴光
指導教授(外文):Ching-Kuang C. Tzuang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:93
中文關鍵詞:震盪器相位雜訊頻率合成器載波調變平面共振腔毫米波倍頻器射頻積體電路
外文關鍵詞:Oscillatorphase noisefrequency synthesizercarrier modulationplanar resonatormillimeter-wavedoublerRFIC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文的第一部份,藉著對震盪器物理精確的了解而提出了一種嶄新的載波調變頻率合成技術.其中詳細的低相位雜訊設計考量乃藉由ISF來進行分析,這方法對雜訊的形成提供了一透徹的洞察,同時並能有效地指出每一個雜訊源對整體電路的影響.同時,為了探究電感的特性在震盪電路中扮演的角色,文中將探討三顆由不同電感構成之震盪器.其中量測結果在距2.83 GHz 載波600 kHz 處的相位雜訊為-106 dBc/Hz,與模擬所得之-107 dBc/Hz僅有1dB的差距.若將此單級的震盪器以四級環狀串接,則可得到擁有45o 相位差的輸出.此多相位震盪器的中心頻率為3.16 GHz,相位雜訊在距載波1 MHz處為-109.17 dBc/Hz.若以此多相位輸出的架構為核心,輔以相位切換電路的設計,可達成具快速切換特性的載波調變頻率合成器.其原理乃採用週期性的相位調變造成頻譜中心頻率的位移.本文展示了一個由台積電0.18微米製程製作的5 GHz載波調變頻率合成器.其功率消耗為46.5 mW,未鎖定時在距載波1MHz處之相位雜訊為-101.8 dBc/Hz.同時由取樣原理造成的突波可藉由主動式濾波器降至-40 dBc.此外,由於整個頻率的切換是在一開迴路中完成,因此切換的速度幾乎是立即性的.這象徵著在快速切換頻率合成器中的一個重大突破.
論文的第二部分將介紹一嶄新的毫米波訊號源電路設計,使用新式的高Q值平面波導共振腔.此一提出的共振腔乃是由平面印刷電路板以周圍切削,鍍銅製作而成.文中將此共振腔輔以創新的電路設計,達成一低相位雜訊的15 GHz微波震盪器.其最大輸出功率為14 dBm,相位雜訊距載波100 kHz處為—98 dBc/Hz.若與傳統的微帶線共振腔相比較,此新式平面波導共振腔能有效降低13 dBc的相位雜訊.此外,本文也設計了一15/30 GHz單級主動式倍頻器,其與15 GHz震盪器連結後的30 GHz毫米波訊號擁有9 dBm的輸出功率,相位雜訊距載波1MHz處為-102 dBc/Hz.此結果實現了一全平面式,以便宜的印刷電路技術達成的毫米波訊號源.

First part of this thesis presents the analysis and design of the carrier-modulated frequency synthesizer, based on physically understanding of the oscillator circuits. Detailed design considerations regarding low phase noise are exams through the ISF approach, which effectively provides a transparent insight into the noise contributions from each noise source. Three experimental LC oscillators fabricated by TSMC 0.25 um 1P5M foundry service are presented to investigate the effect of inductor Q on circuit performance. Measurements show a phase noise of —106 dBc/Hz at 600 kHz offset from 2.83 GHz carrier is achieved by using the PGS (Patterned Ground Shield) [24] inductor, while that simulated by ISF is —107 dBc/Hz. This success in noise prediction also paves the way for a better oscillator performance to accommodate stringent wireless standards. The LC oscillators can further be connected in a ring cascade to provide multi-phase output. In this work, we demonstrate a 4-stages LC oscillator that exhibits a 3.16 GHz, octant-phase output with measured phase noise of —109.17 dBc/Hz at 1MHz offset. Based on the multi-phase oscillator, the carrier modulated frequency synthesizer is designed and implemented using TSMC 0.18 um 1P6M process. Which incorporates the principle of periodic phase modulation on carrier; result in an open loop agile switching frequency synthesizer at 5 GHz. Measurements show the free-running 5GHz carrier with phase noise of —101.8 dBc/Hz at 1MHz offset, draws 18.6 mA from a 2.5V supply. Sidebands at integer multiples of the applied clock-rate can be ameliorated to —40 dBc through tracking active filter. The switching time is almost immediately attributes to the open-loop modulation, signifies an unprecedented evolution to fast-switching frequency synthesizer.
Second part of this thesis presents an oscillator circuit topology that incorporates novel high-Q planar waveguide resonator. The proposed resonator is a waveguide cavity made in printed-circuit-board (PCB) process. Measurements show that the oscillator stabilized by the resonator delivers an output power of 14 dBm at 15 GHz and a phase noise of —98 dBc/Hz at 100 kHz offset from carrier, under 5 V single bias. Experimental results further indicate that the phase noise is degraded by 13 dB when the planar waveguide resonator is replaced by a conventional λ/4 microstrip resonator. Moreover, a single stage 15/30 GHz doubler is designed and driven by the oscillator, produces the 30 GHz output with power level of 9 dBm and phase noise of —102 dBc/Hz at 1MHz offset. Providing an alternative for establishing high-quality all-planar oscillators at millimeter-wave.

Chapter 1 Introduction 1
Chapter 2 Phase Noise Fundamentals and Oscillator Theory
2.1 Phase noise in time and frequency domains 4
2.2 Definition of phase noise 6
2.3 Phase noise models 7
2.4 Oscillator theory and design considerations for low phase noise 12
2.4.1 Basic concepts 12
2.4.2 Cross-coupled LC-tank oscillator 13
2.4.3 Describing function analysis 15
2.4.4 Design strategies for low phase noise 16
Chapter 3 Monolithic Spiral Inductor on Silicon
3.1 Introduction 19
3.2 Inductor model 19
3.3 Loss mechanisms in monolithic spiral inductors on Silicon 23
3.4 Effects of grounding schemes on inductor performance 24
3.5 Patterned ground shield 27
Chapter 4 Experimental CMOS Oscillators
4.1 Inductor design and modeling 32
4.2 Circuit design 34
4.2.1 Oscillator design 34
4.2.2 Buffer design 35
4.3 Phase noise simulation using ISF approach 38
4.4 Measurements and discussions 43
4.5 Multi-phase oscillator incorporates coupled LC tank 47
Chapter 5 Carrier Modulated Frequency Synthesizer
5.1 Introduction 50
5.2 Carrier Modulated Frequency Synthesizer 51
5.3 Circuit design on each building block 52
5.3.1 Multi-phase injection-locked oscillator 52
5.3.2 Buffer stages and RF switches 53
5.3.3 High-speed 1:8 demultiplexer 54
5.3.4 Active anti-aliasing filter 55
5.4 Measurement results and discussions 58
Chapter 6 Planar Realization of 15/30 GHz Oscillator/Doubler
6.1 Introduction 65
6.2 Planar resonator design 66
6.3 All-planar 15 GHz oscillators and 15/30 GHz doubler 67
6.4 Measurements and discussions 69
Chapter 7 Conclusions 72
Bibliography 74

[1] Yue, C.P., Wong, S.S., “A study on substrate effects of silicon-based RF passive components,” IEEE MTT-S International, Vol. 4, 1999.
[2] Donhee Ham, Ali Hajimiri, “Virtual Damping In Oscillators,” IEEE CICC 2002.
[3] Ali Hajimiri, Thomas H. Lee, The Design of Low Noise Oscillators, Kluwer Academic 1999.
[4] D.B.Leeson, “A Simple Model of Feedback Oscillator Noise Spectrum,” Proc. IEEE, vol. 54, pp.329-330, Feb. 1966.
[5] A. Hajimiri and T.H.Lee, “A General Theory of Phase Noise in Electrical Oscillators,” IEEE J.Solid-State Circuits. Vol. 33, no. 2, Feb. 1998.
[6] Celik-Butler, Z., “Low-frequency noise in deep-submicron metal-oxide-semiconductor field-effect transistors,” IEE Proceedings, Circuits, Devices and Systems, Volume: 149 Issue: 1, Feb. 2002
[7] Thomas H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press. 1998
[8] Emad Hegazi, Henrik Sjöland, Asad A. Abidi,” A Filtering Technique to Lower LC Oscillator Phase Noise,” IEEE J.Solid-State Circuits. Vol. 36, Dec. 2001.
[9] Ali Hajimiri and Thomas H. Lee,” Design Issues in CMOS Differential LC Oscillators,” IEEE J.Solid-State Circuits. Vol. 34, May. 1999.
[10] P.A.Cook, Nonlinear dynamical systems,Printice Hall, New York 1994.
[11] Donhee Ham, Ali Hajimiri, “Concepts and Methods in Optimization of Integrated LC VCOs,” IEEE J.Solid-State Circuits. Vol. 36, June. 2001.
[12] Alireza Zolfaghari, Andrew Chan, Behzad Razavi, “Stacked inductors and
transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, No. 4,
pp. 620-628, April 2001.
[13] Hossein Hashemi, and Ali Hajimiri,” Concurrent multiband low-noise
amplifiers-Theory, design, and applications,” IEEE Trans. Microwave Theory
and Tech, vol. 50, No. 1, pp. 288-301, Jan. 2002.
[14] C. Patrick. Yue, and S. Simon Wong,” Physical modeling of spiral inductors on
silicon,” IEEE Trans. Electron Devices, vol. 47, pp. 560-568, March 2000.
[15] Sunderarajan S. Mohan, Maria del Mar Hershenson, Stephen P. Boyd, and
Thomas H. Lee, “Simple accurate expressions for planar spiral inductances,”
IEEE J. Solid-State Circuits, vol. 34, No. 10, pp. 1419-1424, Oct. 1999.
[16] Y. C. Shih, C. K. Pao, and T. Itoh, “A broadband parameter extraction technique
for the equivalent circuit of planar inductors,” 1992 IEEE MTT-S Symp. Dig., pp.
1345-1348, 1992.
[17] Paolo Arcioni, Rinaldo Castello, Giuseppe De Astis, Enrico Sacchi, Francesco Svelto, “Measurement and Modeling of Si Integrated Inductors,” IEEE Trans. Instrument and Measurement, vol. 47, Oct. 1998.
[18] H. A. Wheeler, “Formulas for the skin effect,” Proc. IRE, vol. 30, pp. 412-424,
Sept. 1942.
[19] Ali M. Niknejad, Robert G. Meyer, “Analysis of eddy-current losses over conductive substrates with applications to monolithic inductors and
transformers,” IEEE Trans. Microwave Theory and Tech., vol. 49, Jan. 2001.
[20] Inder J. Bahl, “High-performance inductors” IEEE Trans. Microwave Theory and Tech, vol. 49, pp. 654-664, April 2001.
[21] Ya-Hong Xie, Michel R. Frei, Andrew J. Becker, Clifford A. King, D. Kossives,
L. T. Gomez, and S. K. Theiss,” An approach for fabricating high-performance
inductors on low-resistivity substrates,” IEEE J. Solid-State Circuits, vol. 33, pp. 1433-1438, Sep. 1998.
[22] Han-Su Kim, Dawei Zheng, A. J. Becker, and Ya-Hong Xie,” Spiral Inductors on
Si p/p + substrates with resonant frequency of 20 GHz,” IEEE Electron Device
Letters, vol. 22, No. 6, pp. 275-277, June 2001.
[23] Hongrui Jiang, Ye Wang, Jer-Liang Andrew Yeh, and Norman C. Tien,” On-chip
spiral inductors suspended over deep copper-lined cavitites,” IEEE Trans.
Microwave Theory and Tech, vol. 48, pp. 2415-2423, Dec. 2000.
[24] C. Patrick Yue, S. Simon Wong,” On-chip spiral inductors with patterned ground
shields for Si-based RF IC’s,” IEEE J. Solid-State Circuits, vol. 33, pp. 743-752, May 1998.
[25] Abidi A.A., Pottie G.J., Kaiser W.J., “Power-conscious design of wireless circuits and systems,” Proceedings of the IEEE , Volume: 88 Issue: 10 , Oct. 2000.
[26] Mina Danesh, and John R. Long, “Differentially driven symmetric microstrip
inductors,” IEEE Trans. Microwave Theory and Tech, vol. 50, Jan. 2002.
[27] Gray, Meyer, Hurst, Lewis, Analysis and Design of Analog Integrated Circuits, John Wiley & Sons, New York, 2001.
[28] TSMC 0.25um Mixed Signal 2P5M/1P5M+ Salicide 2.5V/3.3V Design Rule.
[29] Alder van der Ziel, Noise in Solid State Devices and Circuits, John Wiley & Sons, New York, 1986.
[30] A. Rofougaran et al., “A 900-MHz CMOS LC oscillator with quadrature outputs,” ISSCC Dig. Tech. Papers, Feb. 1996, pp. 392—393.
[31] Jae Joon Kim, Beomsup Kim, “A Low-Phase-Noise CMOS oscillator with a Ring Structure,” ISSCC Dig. Tech. Papers, 2000, pp. 430—431.
[32] Chi-Wa Lo, Howard Cam Luong, “A 1.5-V 900-MHz Monolithic CMOS Fast-Switching Frequency Synthesizer for Wireless Applications,” IEEE J. Solid-State Circuits, vol. 37, pp. 459-470, April, 2002.
[33] Wei-Zen Chen, Jieh Tsorng Wu, “A 2V 150MHz CMOS Digital Phase Modulator for Fast Switching Frequency Synthesis,” Symposium on VLSI circuits Dig. Tech. Papers, 1999, pp.121-122.
[34] Nosaka, H. et.al., “A low-power direct digital synthesizer using a self-adjusting phase-interpolation technique,” IEEE J. Solid-State Circuits, vol. 36, pp. 1281-1285, Aug. 2001.
[35] Simon Haykin, Communication Systems —3rd ed., John Wiley & Sons, 1994.
[36] Hamid R. Rategh, Thomas H. Lee, “Superharmonic Injection-Locked Frequency Dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June. 1999.
[37] Rafael J. Betancourt-Zamora, Shwetabh Verma and Thomas H. Lee, “1-GHz and 2.8-GHz CMOS Injection-locked Ring Oscillator Prescalers,” Symposium on VLSI Circuits, June, 2001.
[38] Behzad Razavi, Design of Analog CMOS Integrated Circuits, The McGraw-Hill Companies, pp. 401-407, 2000.
[39] Hun-Hsien Chang and Jiin-Chuan Wu, “A 723Mhz 17.2mW CMOS Programmable Counter,” IEEE J. Solid-State Circuits, Vol. 33, Oct. 1998.
[40] E. Belohoubek, E. Denlinger, “Loss Considerations for Microstrip Resonators,” IEEE Trans. Microwave Theory Tech., pp. 522-526, June. 1975.
[41] Ching-Kuang Tzuang, “Dual mode Micrometer/Millimeter wave integrated circuit package,” U.S.Patent 5783847, Jul.21, 1998.
[42] Ching-Kuang C.Tzuang, Kuo-Cheng Chen, Cheng-Jung Lee, Chia-Cheng Ho and Hsien-Shun Wu,” H-Plane Mode Conversion and Application in Printed Microwave Integrated Circuit, EuMC 2000.
[43] Donald G. Thomas,Jr. and G.R. Branner , ”Optimization of Active Microwave
Frequency Multiplier Performance Utilizing Harmonic Terminating Impedances,” IEEE Trans. Microwave Theory Tech., vol 44, pp. 2617-2624, Dec. 1996.
[44] HP 8560 E-Series Spectrum Analyzer Calibration Guide, Santa Rosa, CA: Hewlett-Packard, 1997.
[45] S.L.Badnikar, N.Shanmugam, and V.R.K.Murthy, “Microwave Whispering Gallery Mode Dielectric Resonator Oscillator,” IEEE International Frequency Control Symposium, vol 2, 1999.
[46] I. Gresham et al. “A Compact Manufacturable 76—77-GHz Radar Module for Commercial ACC Applications,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 1, pp. 44-58, Jan. 2001.
[47] Young-Taek Lee et al., “A Novel Phase Noise Reduction Technique in Oscillators Using Defected Ground Structure,” IEEE Microwave Guided Wave Lett., vol. 12, no. 2, pp. 39-41, Feb. 2002.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 82. 韓宏杰,「台灣選民的投票取向」,傳習,第14期,275-280頁,國立台北師範學院,1993年6月。
2. 81. 薛化元,「選舉與台灣政治發展(一九五0-一九九六)-從地方自治選舉到總統直選」,近代中國,第一三五期,34-55頁,台北,1997年。
3. 52. 張亞中,「民意與兩岸未來:自決、直接民主、議會民主?」,香港社會科學學報,No.16,21-46頁,香港城市大學,2000年春季。
4. 66. 黃德福,「選舉、地方派系與政治轉型:七十八年底三項公職人員選舉之省思」,中山社會科學季刊,第五卷第一期,84-96頁,台北,1990年。
5. 77. 蔡英文,「認同與政治:一種理論性之反省」,政治科學論叢,第8期,51-83頁,台北,1997年。
6. 74. 劉勝驥,「從民意測驗看台灣民眾的統獨輿論之變化」,東亞季刊,27卷4期,122-149頁,台北,1996年。
7. 67. 詹雅莉,「選民投票行為研究」,傳習,第9期,177-180頁,國立台北師範學院,1991年7月。
8. 42. 徐火炎,「選民的政治認知與投票行為」,人文及社會科學集刊,第七卷第一期,247-288頁,台北,1995年。
9. 21. 李錦河、溫敏杰,「選民投票決擇階段情境及策略變化對選舉預測之影響-以1998年台南市立法委員選舉為例」,民意研究季刊,208期,1-34頁,1999年4月。
10. 20. 李錦河、溫敏杰,「從行銷學『產品屬性』角度建構『選民需求指標』選舉預測模式-以1997年台南市市長選舉為例」,選舉研究,第五卷第二期,1-33頁,1999年7月。
11. 16. 何思因,「影響我國選民投票決擇的因素」,東亞季刊,第二十三卷第二期,39-49頁,台北,1991年。
12. 10. 王業立,「選舉、民主化與地方派系」,選舉研究,第五卷第一期,77-94頁,台北,1998年。