跳到主要內容

臺灣博碩士論文加值系統

(54.91.62.236) 您好!臺灣時間:2022/01/18 00:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭有財
研究生(外文):Jeng You-Tsai
論文名稱:基於快速符立葉轉換之數位訊號處理器架構及其應用之研究
論文名稱(外文):A Study of FFT DSP Architectures and Their Applications
指導教授:黃家齊黃家齊引用關係
指導教授(外文):Huang Chia-Chi
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:132
中文關鍵詞:快速符立葉轉換數位視訊廣播數位音訊廣播正交分頻調變系統通訊晶片設計
外文關鍵詞:FFTDVBDABOFDMIC DESIGN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:393
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
快速符立葉轉換已成為許多電子產品與無線通訊標準系統之關鍵性系統架構零組件。本論文針對現今世界上快速符立葉轉換之數學演算法及硬體架構技術,做系統化之整理與分析,內容包括數學方面的以二,四,八,二平方,二立方,二/四,二/八,二/四/八為基底之快速符立葉轉換數學演算法分析與研究,及系統架構方面的單一路徑延遲迴授系統,多路徑延遲交換線路系統,單一路徑延遲交換線路系統,線性心縮陣列系統,完全行向系統,部份行向系統,單一記憶體架構,對偶記憶體架構,快取記憶體架構,完整投影架構,網路陣列系統,雙網路陣列系統之分析與研究。並且以正交分頻調變(OFDM)方式為核心之數位音訊廣播與數位視訊廣播系統為應用之範圍。因此本論文將可提供快速符立葉轉換數學演算法及系統架構系統化之研究資訊。

The fast Fourier transform (FFT) has become the key component of many transceiver system architectures for several existing wireless communication system standards. In this report, we summarize different FFT algorithms and hardware architectures in the world. Our work includes the mathematical analysis of the radix-2, radix-4, radix-8, radix-22, radix-23, radix-2/4, radix-2/8, and radix-2/4/8 FFT algorithms. From the system architecture aspect, we analyze single path delay feedback system, multi-path delay commutator system, single path delay commutator system, linear systolic array system, full column system, partial column system, single memory-based system, dual memory-based system, cache memory system, full projection system, mesh array system, and double mesh array system. Finally, we consider the OFDM-based DAB and DVB-T systems as potential system applications. This report can be used as the useful reference information for FFT algorithm and system architecture designs.

目 錄
Chapter1 簡介
Chapter2 快速符立葉轉換數學演算法之分析與研究
2-0 簡介
2-1 以二點為基底的快速符立葉轉換(radix-2 FFT)
2-1.1 DIT架構(decimation in time)
2-1.2 DIF架構(decimation in frequency)
2-2 以四點為基底的快速符立葉轉換(radix-4 FFT)
2-3 以2^2為基底之快速符立葉轉換(radix-22 FFT)
2-4 以2^3點為基底的快速符立葉轉換(radix-23 FFT)
2-5 混合基數快速符立葉轉換演算法(mixed-radix FFT)
2-6 分離基數快速符立葉轉換演算法(split-radix FFT)
2-7 以2/8為基底之快速符立葉轉換(radix-2/8 FFT)
2-8 以2/4/8為基底之快速符立葉轉換(radix-2/4/8 FFT)
2-9 不同演算法之比較
Chapter3 快速符立葉轉換之架構分類與系統分析
3-0 簡介
3-1 快速符立葉轉換之架構分類
3-2 垂直投影架構(row major system)
3-2.1單一路徑延遲迴授系統(SDF)
3-2.1.1 Radix-22 SDF FFT
3-2.1.2 Radix-23 and radix-2/4/8 SDF FFT
3-2.1.3 Radix-8 SDF FFT
3-2.2多路徑延遲交換線路系統(MDC)
3-2.2.1 Radix-23 MDC FFT
3-2.2.2 Radix-4/2 MDC FFT
3-2.3 單一路徑延遲交換線路系統(SDC
3-2.4 線性心縮陣列系統(linear systolic array system)
3-3 水平投影架構(column major system)
3-3.1 完全行向系統(full column system)
3-3.2 部份行向系統(partial column system)
3-4 垂直兼水平投影架構(single processor system)
3-4.1 單一記憶體架構(single memory-based system)
3-4.2 對偶記憶體架構(dual memory-based system)
3-4.3 快取記憶體架構(cache memory system)
3-5 多處理器架構(Multi-processor system)
3-5.1 Radix-2 全投影架構 (Radix-2 full projection system)
3-5.2 心縮陣列(systolic array)
3-5.3 網路陣列系統(mesh array system)
3-5.4 雙網路陣列系統(double mesh array system)
3-6 基於座標旋轉數位電腦之快速符立葉轉換架構(CORDIC)
3-7 各架構之比較
Chapter4 快速符立葉轉換系統應用之研究
4-0 簡介
4-1 DAB之OFDM系統
4-2 DVB-T之OFDM系統
Chapter5 新型快速符立葉轉換系統架構
5-0 簡介
5-1 以CORDIC為基底之radix-2^2單一路徑延遲交換線路快速符立葉轉換系統架構(radix-2^2 CORDIC-based single path delay commutator FFT system)
5-2 以記憶體為基底之radix-22快速符立葉轉換系統架構(radix-22 memory-based FFT system)
Chapter6 結論
Reference

[1] James W. Cooley and Joh n W. Tukey, ”An Algorithm for the Machine Calculation of Complex Fourier Series,” Math. Comp., vol. 19, pp.297-301, April 1965.
[2] Richard C. Singletton, “An algorithm for computing the mixed radix fast Fourier transform,” IEEE Trans. on audio and electro acoustics, vol. AU-17, NO.2, pp.93-100, June, 1969.
[3] Chao Lu, “Implementation of MULTIPLY-ADD FFT algorithms for complex and real data sequences,” IEEE International Sympoisum on Circuits and Systems , vol. 1, pp.480-483,1991.
[4] Lihong Jia, Yonghong Gao, Jouni Isoaho and Hannu Tenhunen, “A new VLSI-oriented FFT algorithm and implementation,”ASIC Conference 1998. Proceedings. Eleventh Annual IEEE International, pp.337-341, 1998.
[5] Se Ho Park, Dong Hwan Kim, Dong Seog Han, Kyu Seon Lee, Sang Jin Park, and Jun Rim Choi, “A 2048 complex point FFT processor for DAB systems,” 6th International Conference on VLSI and CAD, pp.309-312, 1999.
[6] Mark A. Richards,“On hardware Implementation of the split-radix FFT,” IEEE trans. on acoustics, speech, and signal processing, vol. 36, NO.10, pp.1575-1581, October, 1988.
[7] Daisuke Takahashi, “An extend split-radix FFT algorithm,” IEEE signal processing letters, vol. 8, NO. 5, pp.145-147, May 2001.
[8] Cuoab bi and E. V. Jones, “A pipelined FFT processor for word-sequential data,” IEEE trans. on acoustics, speech, and signal processing, vol. 37, NO.12, pp.1982-1985, December, 1989.
[9] Stefan johansson, Shousheng He and Peter Nilsson, ”Wordlength optimization of a pipelined FFT processor,” 42nd Midwest Symposium on Circuits and Systems, Vol. 1 , 2000.
[10] An-Yeu Wu and Tsun-Shan Chan. “Computationally efficient fast algorithm and architecture for the IFFT/FFT in DMT/OFDM systems,” IEEE Workshop on Signal Processing Systems, pp.356-365,1998
[11] Rainer Storn, “A novel radix-2 pipeline architecture for the computation of the FFT,” IEEE, ISCAS’88, 1988.
[12] Sungwook Yu ND Earl E. Swartzlander, Jr., “A pipeline architecture for the multidimensional DFT,” IEEE trans. on signal processing, vol. 49, NO. 9, pp.2096-2102, September 2001.
[13] Earl E. Swartzlander, Jr.,, Wedell K. W. YOUNG and Saul J. Joseph, ”A radix 4 delay commutator for fast Fourier transform processor implementation,” IEEE journal of solid-state circuits, vol. SC-19, NO.5, pp.702-708, October 1984.
[14] Keshab K. Parhi, “Approaches to low-power implementations of DSP system,” IEEE trans. on circuits and systems-1:fundamental theory and applications, vol. 48, NO.10, pp.1214-1224, October 2001.
[15] Yunho Jung, Yonji Tak, Jaeseok Kim. Junhyun Park, Dongkyu Kim, Hyuncheol Park, “Efficient FFT algorithm for OFDM modulation,” Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology, Vol. 2 , pp.676-678, 2001.
[16] Shousheng He and Mats Torkelson, ”Design and implementation of a 1024-point pipeline FFT processor,” Proceedings of the IEEE Custom Integrated Circuits Conference, pp.131-134, 1998.
[17] E. Bidet, D. Castelain, C. Joanblanq, and P. Senn, “A fast single chip implementation of 8192 complex point FFT,” IEEE J. of solid-state circuits, vol. 30, NO. 3, pp.300-305, March 1995.
[18] John E. Whelchel, Jhon P. O’Mally, William J. Rinard, James F. McArthur, “The systolic phase rotation FFT — a new algorithm and parallel processor architecture,” International Conference on Acoustics, Speech, and Signal Processing, Vol. 2, pp.1021-1024, 1990.
[19] J. G. and Hannu Tenhunen, “Efficient VLSI implementation of radix-8 FFT algorithm,” IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp468-471, 1999.
[20] S. He and M. Torkelson, ”A new approach to pipeline FFT processor,” Proceedings of IPPS '96, The 10th International Parallel Processing Symposium, pp.766-770, 1996
[21] J. Choi and V. Boriakoff, “A new linear systolic array for FFT computation,” IEEE trans. on circuits and systems, vol.39, NO.4, pp.236-239, April 1992.
[22] J. Taakla, D. Akopian, J. Astola, and J. Saarinen, “Scalable interconnection networks for partial column array processor architectures,” Proceedings of the 2000 IEEE International Symposium on Circuits and Systems, Vol. 4, pp:513-516, May, 2000.
[23] K. Tanno, T. Taketa, S. Horiguchi, “Parallel FFT algorithm using radix 4 bitterfly computation on an eight-neighbor processor array,” Parallel computing, pp:121-136, 1995.
[24] S. F. Gorman and J. M. Wills, “Partial column FFT pipelines,” IEEE trans. on circuits and systems, vol. 42, NO. 6, pp:414-423, June 1995 .
[25] A. Antola, R.Negrini, and N. Scarabottolo, ”Arrays for discrete Fourier transform,” IEEE Transactions on Signal process., 1988.
[26] Valentn Boriakoff, “FFT computation with systolic arrays, a new architecture,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, pp:278-284, April 1994.
[27] Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck, Discrete-time signal processing, second edition, PRENTICE HALL SIGNAL PROCESSING SERIES, 1989, 1999.
[28] Ediz Cetin, Richard C.S. Morling and lzzet Kale, “ An integrated 256-point complex FFT processor for real-time spectrum analysis and measurement,” Instrumentation and Measurement Technology Conference, IMTC/97. Proceedings. Sensing, Processing, Networking., IEEE , pp:96-101, 1997.
[29] H. Lim and E.E. Swartzlander, “Efficient systolic arrays for FFT algorithms,” Conference Record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers, Vol. 1, pp:141-145, 1996.
[30] Moon Ho Lee, “High speed multidimensional systolic arrays for discrete Fourier transform,” IEEE trans. on circuits and systems, vol. 39, NO. 12, pp:876-879, December 1992.
[31] H. Lim and E.E.Swartzlander, “Multidimensional systolic arrays for multidimensional DFTs”, IEEE International Conference on Acoustics, Speech, and Signal Processing. Conference Proceedings. Vol. 6, pp:3276-3279, 1996.
[32] L. Johnsson, C.T. Ho, M. Jacquemin, and A. Ruttenberg, “Systolic FFT algorithms on boolean cube networks,” Proceedings of the International Conference on Systolic Arrays, pp:151-162, 1988.
[33] S. He and M. Torkelson, “A systolic array implementation of common factor algorithm to compute DFT,” International Symposium on Parallel Architectures, Algorithms and Networks, pp:374-381, 1994.
[34] C.H.Yeh, and B. Parhami, “A class of parallel architectures for fast Fourier transform,” IEEE 39th Midwest symposium on Circuits and Systems, Vol. 2 , pp:856-859, 1996.
[35] A.N. Skodras, A.G.Constantinides, ”Efficient computation of the split-radix FFT,” IEE Proceedings of Radar and Signal Processing, vol. 139, NO. 1, pp:56-60, February 1992.
[36] YU HEN HU, “CORDIC-based VLSI architectures for digital signal processing”, IEEE Signal Processing Magazine , Volume: 9 Issue: 3 , July 1992.
[37] S. He, M. torkelson, “Designing pipeline FFT processor for OFDM (de)modulation”, 1998 URSI International Symposium on Signals, Systems, and Electronics. ISSSE 98. 1998 .
[38] C. Del Toso, P. Combelles, P. Penard, P. Senn, J-L. Sicre, L. Lauer, L. Soyer, J. Galbrun, F. Scalise, “0.5μm CMOS circuits performing OFDM demodulation and channel estimation/correction for digital terrestrial TV applications”, ISSCC, 1998.
[39] F. Rothan, C. Joanblanq, P. Senn, “A video delay line compiler”, IEEE International Symposium on Circuits and Systems, 1990 .
[40] HONG REN WU, FRANK JOHN PAOLONI,” The structure of vector radix fast Fourier transforms”, IEEE Transactions on Acoustics, Speech and Signal Processing, Volume: 37 Issue: 9 , Sept. 1989 .
[41] C. S. Burrus, “Notes on the FFT”, department of electrial and computer engineering RICE University, Houston.
[42] E. Chu, A. George, “FFT algorithms and their adaptation to pararrel processing”, Linear algebra and its applications, 1998.
[43] Ching-Hsien Chang, Chin-Liang Wang, and Yu-Tai Chang, “A novel memory-based FFT processor for DMT/OFDM applications”, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. , Volume: 4 , 1999.
[44] J. Garcia, J. A. Michell, and A. M. Buron, “VLSI configurable delay commutator for a pipeline split radix FFT architecture”, IEEE trans. on signal processing, vol. 47, NO. 11, pp:3098-3107, November 1999.
[45] J. Antonio Hidalgo, J. Lopez, F. Arguello, and E. L. Zapata, “Area-efficient architecture for fast Fourier transform”, IEEE trans. on circuits and systems, vol. 46, NO. 2, pp:187-193, February 1999.
[46] J. W. Jang, W. Przytula, “Trade-offs in mapping FFT computations onto fixed size mesh processor array,” Fifth International Parallel Processing Symposium. Proceedings. pp:170-177, 1991.
[47] L.G. Jhonson,” Conflict free memory addressing for dedicated FFT hardware,” IEEE trans.on circuits and systems, vol. 39, NO.5, May 1992.
[48] Bevan M. baas, “A low power, high performance, 1024-point FFT processor,” IEEE J. of solid-state circuits, vol. 34, NO. 3, pp:380-387, 1999.
[49] N.Anupindi, M. An, J. Cooley, and Qing Yang, ”A new and efficient FFT algorithm for distributed memory systems”, International Conference on Parallel and Distributed Systems, 1994.
[50] Long-Wen Chang, and Shen-Wen Lee, ”Systolic arrays for the discrete Hartley transform,” IEEE trans. on signal processing, vol. 39, NO. 11, pp:2411-2418, November 1991.
[51] Sun-Yuan Kung, “On supercomputing with systolic/wavefront array processors,” IEEE proceedings, vol.72, NO.7, pp:867-884, July 1984.
[52] J. E. Volder, “The CORDIC trigonometic computing technique,” IRE trans. electronic comput., vol. EC-8, pp:330-334, 1959.
[53] European Broadcasting Union, “DAB standard Eureka 147”.
[54] European Broadcasting Union, “DVB standard”.
[55] S.N. Tang, “A frequency domain RAKE receiver architecture and implementation of its key component,” NCTU Thesis, 1998.
[56] Winthrop W. Smith, Joanne M. Smith, ”Handbook of real time fast Fourier transform”, IEEE PRESS, 1995.
[57] Richard van Nee, and Ramjee Prasad,”OFDM wireless multimedia communication”, ARTECH HOUSE, 1999.
[58] Vijay K. Madisetti, ”VLSI digital signal processors,” IEEE PRESS BH, 1995.
[59] R.W. Johnson, L.A. Koyrakh, D.M. Pihl, “Modular scalable parallel architectures for fast transforms,” 14th Annual IEEE International ASIC/SOC Conference. Proceedings. pp:286-290, 2001.
[60] C.L. Wang and C.H Chang, “A new memory-based FFT processor for VDSL transceivers,” The 2001 IEEE International Symposium on Circuits and Systems, Volume: 4 , pp:670-673, 2001.
[61] H. H. Lo, M. D. Shieh, and C. M. Wu, ”Design of an efficient FFT processor for DAB system,” The 2001 IEEE International Symposium on Circuits and Systems, Volume: 4 , pp.654-657, 2001.
[62] S. He, M. Torkelsson, “Real-time pipeline fast Fourier transform processors”, US patent NO.6,098,088, 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top