(44.192.112.123) 您好!臺灣時間:2021/03/06 07:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳國丞
研究生(外文):Kuo-Cheng Chen
論文名稱:洩漏波於斜角饋入方形貼片暨具反對稱週期微擾之微帶線之探討
論文名稱(外文):The Perspective of Leaky Waves in a Corner-Fed Square Patch and a Periodic Microstrip with Anti-Symmetric Perturbations
指導教授:莊晴光
指導教授(外文):Ching-Kuang C. Tzuang
學位類別:博士
校院名稱:國立交通大學
系所名稱:電信工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:85
中文關鍵詞:洩漏波斜角饋入方形貼片週期性的反對稱微擾微帶線
外文關鍵詞:Leaky WavesCorner-Fed Square PatchPeriodicAnti-Symmetric PerturbationsMicrostrip
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要分成三部分:第一部份,作者提出以電路模型的觀點來說明洩漏模在斜角饋入方形貼片天線中所扮演之角色。第二部分,作者提出了一種新型的週期結構之微帶線輻射狀天線陣列。此天線陣列具有圓錐狀(conical)輻射場型,而其輻射機制乃為週期結構中空間諧波(space harmonic)之洩漏。
在第一部份,作者提出一連串的舉證來說明斜角饋入方形貼片天線中洩漏模之洩漏特性。首先,作者觀察雙埠斜角饋入方形貼片天線之相對功率吸收值(RPA, Relative Power Absorbed )。當中RPA之定義為1-|S11|2-|S21|2。在觀察此雙埠結構之RPA時,作者發現RPA之峰值具有週期性,且隨著頻率的升高,此雙埠結構的損耗亦增加。如此之損耗現象讓我們與洩漏模之洩漏特性產生聯想。此外,在觀察此雙埠結構之最大獲得功率增益(maximum available power gain)時可發現:在微帶線洩漏區之外幾乎是沒有能量損耗,而在洩漏區之內卻有相當之能量損耗。當作者觀察單埠斜角饋入方形貼片天線時亦可發現:天線之(0,N)及(N,0)模(N=1,2,3,4)之輻射頻率分別坐落於第一至第四高階洩漏模之洩漏區,且在第四高階洩漏區中其輻射場型具有與洩漏波相似之頻率掃描(frequency scanning)特性。最後作者提出了一種二維傳輸線模型(two-dimensional transmission-line model):以互相垂直之模電流(modal current)來模擬單埠斜角饋入方形貼片天線之激發。當工作頻率在第四高階洩漏區之22.6 GHz時,由此模型所獲得之電流分佈與全波(full-wave)解相當接近。另外,此單埠斜角饋入方形貼片天線亦可發現其減幅振盪(damped oscillation)之電流分佈。此減幅振盪之電流分佈是洩漏模在方形貼片天線中多次反射所造成。尤須注意的是在方形貼片天線中也會激發出束縛模(bound mode)之共振,在此共振頻率時,束縛模共振卻也增強了洩漏模之洩漏。
在第二部份中,作者提出了一種新型週期結構:一微帶線置於具有反對稱性(anti-symmetric)排孔之接地面上。此洩漏微帶線主要輻射出一對向前及向後之波束並應用了週期結構中空間諧波調變(space-harmonic modulation)之概念。其中,每一個空間諧波以其複數傳波參數 表示,並且表現在Brillouin diagram上;而 之意義為:第m個微帶線模(EHm)之第n個空間諧波。 中上標之正負其意義為:上標為正時,表示向前傳導波(forward traveling wave);上標為負時,表示向後傳導波(backward traveling wave)。在此單一天線中 及 空間諧波均表現出奇對稱(odd-symmetric)之電場極化,而且皆在Brillouin diagram之三角形區域外,分別形成背向洩漏波(backward leaky wave)及正向洩漏波(forward leaky wave)。利用此洩漏特性而設計之輻射狀天線陣列,在工作頻率為11.5 GHz時具有圓錐狀輻射場型,其張角為31度,且3-dB之波束為24度。
在第三部份中,作者提出了一種毫米波反射陣列天線的觀念;此反射陣列使用了第二高階洩漏模。另外,作者並對上述之反對稱週期微擾之微帶線的止帶(stopband)作進一步的探討。

The thesis mainly consists of three parts. In the first part, the author proposes a circuit-modeling perspective of leaky-mode leakages in a corner-fed square patch. The second part demonstrates a periodic microstrip radial antenna array with a conical beam. The radiation mechanisms of the antenna array are the leakages of the space harmonics.
The first part chronicles the leaky-mode leakages in a corner-fed square patch. First, the measured peak RPA (relative power absorbed, 1-|S11|2-|S21|2) values of the two-port corner-fed square patch (two-port test circuit) are reported. The peak values are occurred periodically. Such periodicity of frequencies and the phenomenon of increasing losses at higher frequencies enable us to link these peak frequencies to leaky-mode excitations. The maximum available power gain (GA,max), obtained by simultaneously complex conjugate matched impedance at the referenced two ports of the test circuit, depicts that 1) nearly loss-free transmission parameter outside the leaky-mode regions and 2) substantial losses inside the leaky-mode regions. This result suggests that the leaky modes are the main sources causing losses for the two-port test circuit. The one-port properties of the two-port patch with the second port opened are then investigated. The degenerated (0,N) and (N,0) modes (N=1, 2, 3 and 4), calculated by the cavity model method, fall into the strong leakage regions from the first to the fourth higher-order leaky modes. The well-known leaky line’s frequency-scanning characteristics also appear in the one-port test circuit. Lastly, a two-dimensional (2-D) transmission-line model of the one-port test circuit is proposed. This model uses two orthogonal modal currents as excitations to stimulate the corner-fed square patch. At 22.60 GHz, in the fourth higher-order leaky mode (EH4) region, the current distributions obtained by the 2-D transmission-line model closely agree with those of the full-wave simulation. This consistency shows that the damped-oscillation current distributions of the corner-fed square patch at 22.60 GHz are caused significantly by the multiple reflections of the leaky mode. Furthermore, at the resonant frequencies of the patch, the tangled bound-mode resonance of the EH0 mode can enhance the leaky-mode leakages.
In the second part, the author proposes a periodic structure derived from a microstrip on a perforated ground plane with anti-symmetric perturbations. The leaky microstrip radiates mainly a pair of forward and backward beams. The new leaky line design employs the concept of space-harmonic modulation. The dispersion characteristics of space harmonics are established and shown in a Brillouin diagram. Each space harmonic is denoted by its complex propagation constant . represents a traveling-wave component of the nth higher-order spatial component in association with the EHm mode: the superscript, +(-), signifies a forward (backward) traveling wave. For the particular leaky line design, and space harmonics, both showing odd-symmetric field polarization, and both outside the triangular Brillouin region, form the backward and forward leaky waves, respectively. When the leaky lines are evenly and collinearly tied, an 11.5 GHz radial antenna array prototype is formed, and emits a conical beam, showing a 3-dB beamwidth of 24o at the flare angle of 31o.
In the third part, the author would propose a concept of a millimeter-wave microstrip reflectarray incorporating higher-order EH2 leaky mode. Additionally, the stop-band characteristic of the periodic microstrip with anti-symmetric perturbations is further studied.

Abstract (Chinese)……………………………………………………………………...i
Abstract (English)…………………………………………………………………….iii
Acknowledgments…………………………………………………………………….vi
Contents……………………………………………………………………………...vii
List of Figures………………………………………………...………………………ix
List of Tables……………………………………………………………………...…xiii
Chapter 1 Introduction………………………………………………………………...1
1.1 Motivation………………………………………………………………..1
1.2 Organization of the Thesis………………………………………………..1
1.3 Contribution of the Thesis……………………………………………..…2
Chapter 2 Leaky-Mode Leakages in a Corner-Fed Square Patch……………………..3
2.1 Introduction………………………………………………………………3
2.2 Losses and Leaky Modes………………………………………………...4
2.2.1 Relative Power Absorbed (RPA)…………………………………..4
2.2.2 Maximum Available Power Gain (GA,max)………………………..11
2.3 Radiation Frequencies and Leaky Modes………………………………14
2.3.1 Radiation Frequencies of the Corner-Fed Square Patch………….14
2.3.2 Frequency-Scanning Characteristics……………………………...18
2.4 Circuit Model for the Corner-Fed Square Patch………………………..20
2.4.1 Two-Dimensional (2-D) Transmission-Line Model……………...20
2.4.2 Comparative Studies……………………………………………...27
2.5 Conclusion………………………………………………………….35
Chapter 3 An Anti-symmetrically Periodic Microstrip and the Application─ A Radial Antenna Array……………………………………………………………..…………36
3.1 Introduction……………………………………………………………..36
3.2 Microstrip on an Anti-symmetrically Perforated Ground Plane………..39
3.3 Space Harmonics and Brillouin Diagram……………………………….47
3.4 Radiation Characteristics of the Single Leaky Line and the Radial Antenna Array………………………………………………………………58
3.5 Conclusion………………………………………………………………66
Appendix……………………………………………………………………67
Chapter 4 Future Works………………………………………………………………69
4.1 Concept of a Millimeter-Wave Microstrip Reflectarray Incorporating Higher-Order EH2 Leaky Mode…………………………………………….69
4.2 Stopband Characteristic of the Periodic Microstrip with Anti-symmetric Perturbations (Fig. 3-2)……………………………………………………..75
Chapter 5 Conclusions……………………………………………………………….79
References……………………..……………………………………………………..80
[1] A. A. Oliner and K. S. Lee, “The nature of the leakage from higher modes on microstrip line,“ IEEE MTT-S Int. Microwave Symposium Digest, 1986, pp. 57-60.
[2] A. A. Oliner, “Types and basic properties of leaky modes in microwave and millimeter-Wave Integrated Circuits,” IEICE Trans. Electron., vol. E83-C, no. 5, pp. 675-686, May 2000.
[3] H. Shigesawa, M. Tsuji and A. A. Oliner, “Simultaneous propagation of bound and leaky dominant modes on printed-circuit lines: a new general effect,“ IEEE Trans. Microwave Theory Tech., vol. 43, no. 12, pp. 3007-3019, Dec. 1995.
[4] M. Tsuji and H. Shigesawa, “Simultaneous-propagation effect in conductor-backed coplanar strips and its experimental verification,” IEICE Trans. Electron., vol. E83-C, no. 5, pp. 742-749, May 2000.
[5] S. Xu, J. Min, S. T. Peng and F. K. Schwering, “A millimeter-wave omnidirectional circular dielectric rod grating antenna,” IEEE Trans. Antennas Propagat., vol. 39, pp. 883-891, July 1991.
[6] S. Xu and X. Wu, “A millimeter-wave omnidirectional dielectric rod metallic grating antenna “ IEEE Trans. Antenna Propagat., vol. 44, pp. 74-79, Jan. 1996.
[7] C. W. Lee and H. Son, “Radiation characteristics of dielectric-coated coaxial waveguide periodic slot with finite and zero thickness,” IEEE Trans. Antennas Propagat., vol. 47, pp. 16-25, Jan. 1999.
[8] J. M. Grimm and D. P. Nyquist, “Spectral analysis considerations relevant to radiation and leaky modes of open-boundary microstrip transmission line,“ IEEE Trans. Microwave Theory Tech., vol. 41, no. 1, pp. 150-153, Jan. 1993.
[9] J. S. Bagby, C.-H. Lee, D. P. Nyquist and Y. Yuan, “Identification of propagation regimes on integrated microstrip transmission lines,“ IEEE Trans. Microwave Theory Tech., vol. 41, no. 11, pp. 1887-1894, Nov. 1993.
[10] F. Wilczewski, “Application of the complex integration path in the theory of leaky modes,“ IEEE Microwave and Guided Wave Lett., vol. 6, no. 3, pp. 149-150, March 1996.
[11] Y.-D. Lin, J.-W. Sheen and C.-K. C. Tzuang, “Analysis and design of feeding structures for microstrip leaky wave antenna,“ IEEE Trans. Microwave Theory Tech., vol. 44, no. 9, pp. 1540-1547, Sept. 1996.
[12] G.-J. Chou and C.-K. C. Tzuang, “Oscillator-type active-integrated antenna: The leaky-mode approach,“ IEEE Trans. Microwave Theory Tech., vol. 44, no. 12, pp. 2265-2272, Dec. 1996.
[13] C.-J. Wang, C. F. Jou, J.-J. Wu and S.-T. Peng, “Radiation characteristics of active frequency-scanning leaky-mode antenna arrays,” IEICE Trans. Electron., vol. E82-C, no. 7, pp. 1223-1228, July 1999.
[14] T. -L. Chen and Y.-D. LIN, “A K-band aperture-coupled microstrip leaky-wave antenna,” IEICE Trans. Electron., vol. E82-C, no. 7, pp. 1236-1241, July 1999.
[15] K. C. Gupta, R. Garg and R. Chadha, Computer-Aided Design of Microwave Circuits, Artech House Inc., 1981, Chapter 8.
[16] K.-C. Chen and C.-K. C. Tzuang, “Leaky-modes leakage from planar circuits,“ IEEE MTT-S Int. Microwave Symposium Digest, 1997, pp. 495-498.
[17] J. P. Daniel, G. Dubost, C. Terret, J. Citerne and M. Drissi, “Research on planar antennas and arrays: ”Structures Rayonnantes” ,“ IEEE Trans. Antennas Propagat. Mag. vol. 35, no. 1, pp. 14-38, Feb. 1993.
[18] K.-C. Chen, C.-K. C. Tzuang and J. Huang, “A millimeter-wave microstrip reflectarray incorporating higher-order EH2 leaky mode,” 2001 Topical Symposium On Millimeter Waves (TSMMW 2001), pp. 127-130 , Japan, Mar. 2001.
[19] Y. T. Lo, D. Solomon and W. F. Richards, “Theory and experiment on microstrip antennas,“ IEEE Trans. Antennas Propagat., vol. AP-27, no. 2, pp. 137-145, March 1979.
[20] E. L. Newman, “Strip antennas in a dielectric slab,“ IEEE Trans. Antennas Propagat., vol. AP-26, no. 5, pp. 647-653, Sept. 1978.
[21] K. R. Carver and E. L. Coffey, “Theoretical investigation of the microstrip antenna,“ Physic. and Sci. Lab., New Mexico State Univ., Las Cruces, Tech. Rep. PT-00929, Jan. 23, 1979.
[22] G. W. Hanson, “Steady-state scattering from microstrip dipole and patch antennas evaluated by the singularity expansion method,” IEEE AP-S Int. Symposium Held in conjunction with URSI Radio Science Meeting and Nuclear EMP Meeting, 1992, pp. 2235-2238.
[23] W.-T. Lo and C.-K. C. Tzuang, “A new full-wave integral equation method for the analysis of coplanar strip circuit using the mixed-potentials eigenfunction expansion technique,“ IEEE MTT-S Int. Microwave Symposium Digest, 1993, pp. 1539-1542.
[24] K. A. Michalski and D. Zheng, “On the leaky modes of open microstrip lines,“ Microwave Opt. Tech. Lett., vol. 2, no. 1, pp. 6-8, Jan. 1989.
[25] A. A. Oliner, “Leakage from higher modes on microstrip line with application to antennas,“ Radio Sci., vol. 22, no. 6, pp. 907-912, Nov. 1987.
[26] A. A. Oliner, “Leakage from various waveguides in millimeter wave circuits,“ Radio Sci., vol. 22, no. 6, pp. 866-872, Nov. 1987.
[27] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, Prentice-Hall, Inc., 1984, Chapter 3.
[28] D. H. Schaubert, “A review of some microstrip antenna characteristics,“ in Microstrip Antennas─The Analysis and Design of Microstrip Antennas and Arrays, IEEE PRESS edited by D. M. Pozar and D. H. Schaubert, 1995, pp. 59-67.
[29] W.-T. Lo, C.-K. C. Tzuang, S.-T. Peng and C.-H. Lin, “Full-wave and experimental investigations of resonant and leaky phenomena of microstrip step discontinuity problems with and without top cover,“ IEEE MTT-S Int. Microwave Symposium Digest, 1994, pp. 473-476.
[30] N. K. Das, “Power leakage, characteristic impedance, and leakage-transition behavior of finite-length stub sections of leaky printed transmission lines,“ IEEE Trans. Microwave Theory Tech., vol. 44, no. 4, pp. 526-536, April 1996.
[31] C.-C. Lin and C.-K. C. Tzuang, “Bound-mode resonance improving the input matching of a dual-mode leaky guiding structure,” IEEE Microwave and Guided Wave Lett., vol. 8, no. 12, pp. 418-420, Dec. 1998.
[32] Mini-Special Issue on Electromagnetic Crystal Structures, Design, Synthesis and Applications, IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2059-2166, Nov. 1999.
[33] V. Radisic, Y. Qian, R. Coccioli and T. Itoh, “Novel 2-D photonic bandgap structure for microstrip lines,” IEEE Microwave and Guided Wave Letters, vol. 8, pp. 69-71, Feb. 1998.
[34] K. C. Chen, C. K. C. Tzuang, Y. Qian and T. Itoh, “Leaky properties of microstrip above a perforated ground plane,” IEEE MTT-S Int. Microwave Symposium Digest, pp. 69-72, 1999.
[35] A. Petosa and J. S. Wight, “Analysis of a low profile slotted microstrip antenna for cellular mobile radio,” IEEE Trans. Vehicular Technology, vol. 41, pp. 363-368, Nov. 1992.
[36] K. Fujimoto, T. Hori, S. Nishimura and K. Hirasawa, “Applications in mobile and satellite systems,“ in Handbook of Microstrip Antennas, IEE Electromagnetic Waves Series 28, edited by J. R. James and P. S. Hall, 1989, vol. 2, Chapter 19, pp. 1127-1132.
[37] W. Menzel, “A new travelling-wave antenna in microstrip,” 33, pp. 137-140, Apr. 1979.
[38] G. J. Chou and C. K. C. Tzuang, ”An integrated quasi-planar leaky-wave antenna,” IEEE Trans. Antennas Propagat., vol. 44, pp. 1078-1085, Aug. 1996.
[39] Y. D. Lin, J. W. Sheen and C. K. C. Tzuang, “Analysis and design of feeding structures for microstrip leaky wave antenna,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1540-1547, Sept. 1996.
[40] C. N. Hu and C. K. C. Tzuang, “Microstrip leaky-mode antenna array,” IEEE Trans. Antennas Propagat., vol. 45, pp. 1698-1699, Nov. 1997.
[41] T. L. Chen and Y. D. Lin, “Aperture-coupled microstrip line leaky wave antenna with broadside mainbeam,” Electron. Lett., vol. 34, pp. 1366-1367, July 1998.
[42] Y. Qian, B. C. C. Chang, T. Itoh, K. C. Chen and C. K. C. Tzuang, “High efficiency and broadband excitation of leaky mode in microstrip structures,” IEEE MTT-S Int. Microwave Symposium Digest, pp. 1419-1422, 1999.
[43] C. C. Lin and C. K. C. Tzuang, “A dual-beam micro-CPW leaky-mode antenna,” IEEE Trans. Antennas Propagat., pp. 310-316, Feb. 2000.
[44] M. Cohn, B. D. Geller and J. M. Schellenberg, “A 10 Watt Broadband FET combiner/amplifier,” IEEE MTT-S Int. Microwave Symposium Digest, pp. 292-297, 1979.
[45] K. S. Lee, Microstrip Line Leaky Wave Antenna, Ph.D. dissertation, Polytechnic Institute of New York, June 1986.
[46] Zeland IE3D Version 8.0, Zeland Software, Inc.
[47] A. A. Oliner, Radiating Periodic Structures: Analysis in terms of k vs. b diagrams, SHORT COURSE on Microwave Field and Network Techniques, June 4, 1963.
[48] R. E. Collin and F. J. Zucker, Antenna Theory (Part 2), McGraw-Hill Book Company, 1969, Chapter 19.
[49] R. S. Adve, T. K. Sarkar, O. M. C. Pereira-Filho and S. M. Rao, “Extrapolation of time-domain responses from three-dimensional conducting objects utilizing the matrix pencil technique,” IEEE Trans. Antennas Propagation, vol. 45, pp. 147-156, Jan. 1997.
[50] C. K. C. Tzuang and J. M. Lin, “On the mode-coupling formation of complex modes in a nonreciprocal finline,” IEEE Trans. Microwave Theory Tech., vol. 41, pp. 1400-1408, Aug. 1993.
[51] D. Slater, Near-field antenna measurements, Artech House, 1991, Chapter 3, pp. 50-51.
[52] J. Huang and R. J. Pogorzelski, “A Ka-band microstrip reflectarray with elements having variable rotation angles,” IEEE Trans. Antennas Propagat., vol. 46, pp. 650-656, May 1998.
[53] R. D. Javor, X.-D. Wu, and K. Chang, “Design and performance of a microstrip reflectarray antenna,” IEEE Trans. Antennas Propagat., vol. 43, pp. 932-939, Sept. 1995.
[54] C.-K. C. Tzuang, ”Leaky mode perspective of printed antenna,” 1998 Asia-Pacific Microwave Conference, pp. 1471-1476.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 高雅珠、晏涵文(1996)‧吸菸預防教育介入研究‧中華公共衛生雜誌,16(2),160-169。
2. 秦海谷(1992)‧高職學生吸菸狀況調查分析‧諮商與輔導,84,254-255。
3. 洪錦珠(1988)‧全國五專(工專)學生抽菸行為與態度問題之研究‧華夏學報,22,8489-8686。
4. 姜博文、蔡世滋(1994)‧青少年與吸菸‧臨床醫學,33(3),151-156。
5. 林榮第、吳慶南、李鍾祥(1992)‧吸菸與健康‧當代醫學,19(12),7-14。
6. 吳瓊滿(1999)‧性別、吸菸與心肌梗塞間的關係‧美和專校學報,17,15-29。
7. 李景美(1990)‧台北市國民中學三年級男生吸菸行為之情境及家庭狀況因素分析研究‧學校衛生,17,38-47。
8. 江承曉、沈姍姍、林為森(1999)‧南部地區專科學生實施健康促進行為之探討‧嘉南學報,25,129-138。
9. 陳錫琦(1995)‧青少年吸菸意向研究‧學校衛生,28,27-36。
10. 黃松元(1993)‧建康促進與健康教育‧台北:師大書苑。
11. 黃淑貞(1997)‧大學生健康信念、自我效能、社會支持與吸菸行為研究‧學校衛生,31,30-44。
12. 黃德祥(1993)‧青少年抽菸行為調查之研究─以一所私立高職為例‧彰化師範大學學報,4,67-109。
13. 黃松元、余玉眉、江永盛、陳政友、賴香如、何瑞琴(1991)‧台灣地區青少年吸菸行為調查研究‧衛生教育論文集刊,5,45-66。
14. 鄭惠美(2000)‧學童家長與學童蔬果攝取行為研究‧衛生教育學報,13,91-105。
15. 劉潔心、劉貴雲、蔡春美(2000)‧青少年互動世界菸自助手冊教材發展及介入效果之初探性研究‧衛生教育學報,13,73-89。
 
系統版面圖檔 系統版面圖檔