跳到主要內容

臺灣博碩士論文加值系統

(3.81.172.77) 您好!臺灣時間:2022/01/21 20:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃國峰
研究生(外文):Kuo-Feng Huang
論文名稱:寬邊耦合傳輸線之高階特性與設計
論文名稱(外文):Characteristics and Design of Broadside-Coupled Transmission Lines at Higher-Order
指導教授:莊晴光
指導教授(外文):Ching-Kuang Tzuang
學位類別:博士
校院名稱:國立交通大學
系所名稱:電信工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:93
中文關鍵詞:寬邊耦合高階洩漏模天線陣列高增益窄波束八木多層
外文關鍵詞:broadside-coupledhigher-orderleaky modearray antennahigh-gainnarrow-beamYagi-Udamultilayered
相關次數:
  • 被引用被引用:0
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
本論文的目的包含有兩個層次:第一、詳細地描述這種被大量應用的寬邊耦合傳輸線之高階洩漏模;第二、這種洩漏模在天線方面的實際應用。一種具代表性的寬邊耦合傳輸線結構,可以闡明多層、立體之微波與毫米波電路的高階洩漏效應。雙層的案例以一種物理層面的透視而被詳加分析,並發現第一高階洩漏模的個數會等於微帶線的總數。
通過三至五層寬邊耦合微帶線的案例討論,存在於廣義多層寬邊耦合傳輸線中的高階洩漏效應被徹底地調查研究。數個深具意義的結論可以從存在於這種多層寬邊耦合微帶線的高階洩漏模,它們的色散特性與模電流分布來得知。藉著本論文所提出結果輔助,讀者可以精巧地控制這種耦合洩漏模,以避免負面效應,或者將這些模應用在高增益天線方面。
在所發現存在於雙層案例中的兩個第一高階洩漏模,其中一個是屬於弱衰減性。在此同時,另一個則是強衰減性。本文設計並量測了一種僅僅使用前述弱衰減性洩漏模的高增益、低輻射夾角的天線,做為這種寬邊耦合結構的應用。這種天線展現出顯著的輻射夾角縮小,幅度達到60%。這種天線是第一支應用微帶線高階洩漏模的似八木式陣列天線,其中三個基本元素(驅動單元、反射單元及導向單元)是在天線的寬邊方向上堆疊而成。藉由調整導向單元的微帶線寬度,衰減率可以進一步被調降。使用雙層寬邊耦合微帶線的洩漏模天線,其半功率輻射夾角在34 GHz,從寬邊量起25.2o處的測量值是2.1o。
一維的洩漏模天線被成功地設計並測量。這種陣列天線只需要較簡單的饋入網路,就可以實現近寬邊的筆狀波束輻射,並且具有高的效率及表現。

The aim of this work is two fold, 1) detailed description of the higher-order leaky modes of the much used broadside-coupled microstrips and 2) practical application of such leaky modes as an antenna. A representative broadside-coupled transmission line structure is examined to elucidate the detail of leakage effects at higher-order of multilayered, 3-D microwave and millimeter-wave circuits. Two-layered cases are analyzed from a physical perspective and the total number of first higher-order leaky modes is found to be equal to that of microstrips.
The higher-order leakage effects of general multilayered broadside-coupled transmission lines are thoroughly investigated via the studies of the cases of three to five-layered broadside-coupled microstrips. Several significant conclusions can be derived from the details of the dispersion characteristics and modal current distributions of the higher-order leaky modes exist in the broadside-coupled microstrips. With the aim of the results found in this thesis, one can sophisticatedly control the coupled leaky modes to avoid adverse effects, or apply these modes in high-gain antenna application.
One of the two first higher-order leaky modes obtained in the two-layered case is weakly attenuated, while the other is strongly attenuated. A high-gain, narrow-beam leaky-mode antenna using only the weakly attenuated leaky mode is designed and measured as an application of this broadside-coupled structure, exhibiting a marked beam-width reduction of 60%. This antenna is the first Yagi-Uda-like array antenna that utilizes the higher-order leaky modes of the microstrip, for which the three basic elements - driver, reflector and director - are stacked in the broadside direction.
The attenuation rate can be further reduced by adjusting the strip width of the director. The half-power beam-width of the leaky-mode antenna applying two-layered broadside-coupled microstrips with wider top microstrip is measured to be 2.1o at 25.2o from the broadside at 34 GHz.
A one-dimensional leaky-mode antenna is successfully designed and measured. This antenna array needs simpler feeding network to realize a nearly-broadside pencil beam radiation and shows high efficiency and performance.

ABSTRACT (Chinese) ………………………..…….…………………………… i
ABSTRACT (English) ……………………………...…………………...……… iii
ACKNOWLEDGMENTS (English) …………...…….………….……………… v
ACKNOWLEDGMENTS (Chinese) …………………………………………… vi
LIST OF TABLES ……………………………….……………………………… vii
LIST OF FIGURES ……………………………….………….………………… viii
Chapter 1 Introduction ……………………..………………………………… 1
1.1 Motivation ……………………………………………………………… 1
1.2 Application …………………………………………………………….. 3
1.3 Organization ……………………………………………………………5
Chapter 2 Two-Layered Broadside-Coupled Microstrips ……………….…. 7
2.1 Characteristics ………………………………………………………… 7
2.1.1 Dispersion Characteristics ………………………….……. 10
2.1.2 Modal Currents ……………………………………..…..…. 12
2.1.3 Field Distributions …………………………………………. 15
2.2 Control of the Attenuation Rate ……………………………….…… 19
2.3 Non-Uniform Microstrip ……………………………………………... 22
2.3.1 Principle of Operation ……………………………………... 22
2.3.2 Radiation Characteristics …………………………………. 23
2.3.3 Tapered Microstrip Line …………………………………... 25
2.3.4 Achievement ……………………………………………….. 28
2.4 Isolated Modes ………………………………………………………. 29
Chapter 3 General Multilayered Broadside-Coupled Microstrips ………... 32
3.1 Destination …………………………………………………………… 32
3.2 Three-Layered Broadside-Coupled Microstrips ………………….. 34
3.3 Four- and Five-Layered Broadside-Coupled Microstrips ……….. 39
3.4 Conclusion …………………………………………………………… 46
Chapter 4 Design and Measurement ……………………………………….. 47
4.1 Narrow-Beam Leaky-Mode Antenna ……………………………… 48
4.2 Wider Top Microstrip ………………………………………………... 58
Chapter 5 1-D Leaky-Mode Antenna Array ………………………………… 61
5.1 Introduction …………………………………………………………... 61
5.2 Modal Analysis ………………………………………………………. 64
5.3 Design and Measurement…………………………………………... 68
5.4 Conclusion …………………………………………………………… 71
Chapter 6 Conclusion ………………………………………………………… 72
APPENDIX ……………………………….……………………………………….. 74
BIBLIOGRPHY ……………………………….………………………………….. 77

[1] K. Nishikawa, K. Kamogawa, R. Inoue, K. Onodera, T. Tokumitsu, M. Tanaka, I. Toyoda, and M. Hirano, “Miniaturized millimeter-wave masterslice 3-D MMIC amplifier and mixer,“ IEEE Trans. Microwave Theory Tech., vol. MTT-47, pp. 1856 -1862, Sept. 1999.
[2] W. Schwab, and W. Menzel, “On the design of planar microwave components using multilayer structures,” IEEE Trans. Microwave Theory Tech., vol. MTT-40, pp. 67-72, Jan. 1992.
[3] F. J. Villegas, D. R. Jackson, J. T. Williams, and A. A. Oliner, “Leakage fields from planar semi-infinite transmission lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-47, pp. 443-454, Apr. 1999.
[4] L. Carin and N. K. Das, “Leaky waves on broadside-coupled microstrip,” IEEE Tranc. Microwave Theory Tech., vol. MTT-40, pp. 58-66, Jan. 1992.
[5] C.-K C. Tzuang, and C.-C. Lin, “Fast-wave resonance by space-wave leaky mode carrying dominant-mode-like currents,” IEEE Trans. Microwave Theory Tech., vol. MTT-46, pp. 2444-2449, Dec. 1998.
[6] A. A. Oliner and K. S. Lee, “The nature of the leakage from higher modes on microstrip line,” IEEE MTT-S Int. Microwave Dig., pp. 55-60, 1986.
[7] W. Menzel, “A new traveling-wave Antenna in Microstrip,” A.E.U., Band 33, pp. 137-140, April 1979.
[8] Y. Qian, B.C.C. Chang, M.F. Chang and T. Itoh, “Multi-mode microstrip antennas for reconfigurable aperture,” 2000 IEEE AP-S Symposium, vol. 1, pp. 318 -320.
[9] K. S. Lee, “Microstrip line leaky-wave antenna,” Ph. D. dissertation, Polytechnic Instit., Brooklyn, New York, 1986.
[10] D. R. Jackson and A. A. Oliner, “A leaky-wave analysis of the high-gain printed antenna configuration,” IEEE Trans. Antennas Propagat., vol. 36, pp. 905-910, July 1988.
[11] D. R. Jackson, A. A. Oliner and A. Ip, “Leaky-wave propagation and radiation for a narrow-beam multiple-layer dielectric structure,” IEEE Trans. Antennas Propagat., vol. 41, pp. 344-348, March 1993.
[12] C.-Y. Lee, A. Basu, J. Liao, J. S.-M. Wong, B. Houshmand and T. Itoh, “Millimeter-wave dielectric leaky-wave antennas,” Int. Symp. on Signals, Systems and Electronics. pp. 21-24, 1995.
[13] Y. Wagatsuma, Y. Daicho and T. Yoneyama, “Millimeter-wave planar antenna for car warning radar,” Topical Symp. on Millimeter Waves, pp. 173-176, July 1997.
[14] M. Guglielmi and D. R. Jackson, “Broadside radiation from periodic leaky-wave antennas,” IEEE Trans. Antennas Propagat., vol. 41, pp. 31-37, Jan. 1993.
[15] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design. New York: Wiley, 1981, pp. 220-228, ch. 5
[16] J. E. Dalley, “A strip-line directional coupler utilizing a non-homogeneous dielectric medium,” IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp. 706-712, Sept. 1969.
[17] J. L. Allen, “Broadside-coupled strips in a layered dielectric medium,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 662-669, Oct. 1972.
[18] P. Bhartia and P. Pramanick, “Computer-aided design models for broadside-coupled striplines and millimeter-wave suspended substrate microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-36, pp. 1476-1481, Nov. 1988.
[19] Y.-C. Chiang, C.-K C. Tzuang, and S. Su, “Design of a three-dimensional gap-coupled suspended substrate stripline bandpass filter,” IEE Proc. H, vol. 139, No. 4, pp. 376-384, Aug. 1992.
[20] C.-M. Tsai and K. C. Gupta, “A generalized model for coupled lines and its applications to two-layer planar circuits,” IEEE Trans. Microwave Theory Tech., vol. MTT-40, pp. 2190-2199, Dec. 1992.
[21] F. Tefiku, E. Yamashita and J. Funada, “Novel directional couplers using broadside-coupled coplanar waveguides for double-sided printed antennas,” IEEE Trans. Microwave Theory Tech., vol. MTT-44, pp. 275-282, Feb. 1996.
[22] Kuo-Feng Huang and Ching-Kuang C. Tzuang, “Leaky modes of vertically stacked microstrips at higher order,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, WEIF-5, pp. 1077-1080, June 2000.
[23] C.-N. Hu and C.-K. C. Tzuang, “Analysis and design of large leaky-mode array employing the coupled—mode approach,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-49, pp. 629-636, April 2001.
[24] R. F. Harrington, Time-Harmonic Electromagnetic Fields. New York: McGraw-Hill, 1993, ch. 3.
[25] Kuo-Feng Huang and Ching-Kuang C. Tzuang, Tsair-Bih Horng and Hsien-Shun Wu, “Radiation characteristics of vertically stacked microstrips at Ka-Band,” TSMMW 2000, Kanagawa, JAPAN, March 2000.
[26] Kuo-Feng Hunag and Ching-Kuang C. Tzung, ”Characteristics and Design of Broadside-Coupled Transmission Line at a Higher-Order Leaky Mode,” IEEE Trans. on Microwave Theory and Techniques (to be published).
[27] C.-N. Hu and C.-K. C. Tzuang, “High-efficiency closely coupled microstrip leaky-mode antenna array,” 1999 Asia Pacific Microwave Conference, vol. 1, pp. 72-75.
[28] Y. Hua and T. K. Sarkar, "Matrix Pencil and System Poles," Signal Processing, 21, 2, pp.195-198, Oct. 1990.
[29] Tsai-Pi Hung and Ching-Kuang C. Tzuang,” 38GHz High-Directivity Planar Leaky-Mode Antenna Array,” 2001 Asia Pacific Microwave Conference, vol. 2, pp. 962-965.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top