跳到主要內容

臺灣博碩士論文加值系統

(54.80.249.22) 您好!臺灣時間:2022/01/20 07:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:歐陽玉萍
研究生(外文):Yu-Ping Ou Yang
論文名稱:企業網站評估之模糊積分階層式多屬性決策
論文名稱(外文):Hierarchical MADM of Fuzzy Integral for Enterprise Web Sites Evaluation
指導教授:張保隆張保隆引用關係林進財林進財引用關係
指導教授(外文):Pao-Long Chang ph.DChin-Tsai Lin ph.D
學位類別:碩士
校院名稱:國立交通大學
系所名稱:經營管理研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:87
中文關鍵詞:多屬性決策模糊測度模糊積分模糊密度階層式架構
外文關鍵詞:Multiple attribute decision makingFuzzy measureFuzzy integralFuzzy densityHierarchical Structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:349
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在現實的世界裡,大部分決策之準則彼此間都會有關係,因此使用傳統的加法測度較不合適。而模糊測度(fuzzy measure)則將假設放寬,僅要求滿足單調性,且使用不需要假設可加性和獨立性的模糊積分(fuzzy integral)來處理人類主觀評估程序是較為適當的。本研究修改了一個演算法,只需輸入模糊密度(fuzzy densities)就可獲得l-值,且利用以l-模糊測度為基礎的模糊積分去獲得整體評價值,最後並以一個企業內部網站評鑑之實例來對階層式多屬性決策做個說明,而結論也得到在處理人類主觀評估或準則間不獨立時採用模糊積分是較傳統的多屬性評估來得適合。

In the real world, most of criteria have inter-dependent characteristics and cannot be evaluated by the conventional additive measure. However, it would be more appropriate to apply a fuzzy integral model, in which it is not necessary to assume additivity and independency, to approximate the human subjective evaluation process. This research modifies an effective algorithm to determine the l-value by the input data of fuzzy densities and by fuzzy integral based on l-fuzzy measure to determine the overall evaluation. Finally, this research gives an example of enterprise intranet web sites evaluation with illustrations of hierarchical structure of l-fuzzy measure for Choquet integral model, and the results show fuzzy integral is more suitable than a traditional multi-criteria evaluation method for human subjective evaluation or criteria are not mutually independent.

Abstract …………………………………………………… i
Acknowledge ………………………………………… iii
Table of Contents ………………………………………… iv
List of Tables …………………………………………… vi
List of Figures ………………………………………… viii
Chapter I Introduction …………………………………… 1
1.1 Research Background and Problem Statements ......................................... 1
1.2 Research Objectives …………………………… 3
1.3 Research Outline ………………………………… 4
Chapter II Literature Review …………………………… 5
2.1 Multiple Attribute Decision Making ………… 5
2.2 Weight-assessing Methods ……………………… 7
2.3 Fuzzy Measure and Fuzzy Integral …………… 9
2.4 Enterprise Intranet Web Site Evaluation … 14
Chapter III λ-Fuzzy Measures and Fuzzy Integral for Multiple Criteria Evaluation Process ………………… 16
3.1 Linguistic variable and Fuzzy Number …………… 17
3.2 Fuzzy Measures and Fuzzy Integrals ………… 19
3.2.1 λ-Fuzzy Measures ………………………………… 21
3.2.3 Fuzzy Integrals …………………………………… 24
3.3 Constructing the Hierarchical Structure of λ-Fuzzy Measures and Fuzzy Integral Model ……………………… 26
3.3.1 Modeling the Hierarchical Structure of Choquet Integral ……………………………………………………… 27
3.3.2 Grade of Criteria Importance ………………… 29
Chapter IV Fuzzy Hierarchical Evaluation with Fuzzy Integral for Enterprise Web Sites ……………………… 32
4.1 Case Background and Problem Statement ……… 32
4.2 Hierarchical Multi-Criteria Evaluation System Constructing ……………………………………………… 33
4.2.1 Aspects generating …………………………………… 34
4.2.2 Determining the Grade of Criteria Importance 37
4.2.3 Choquet Integral for the Case Enterprise Intranet Web Site Evaluation .................................... 39
4.3 Results and Discussions ………………………… 43
Chapter V Conclusions ……………………………………… 50
References …………………………………………………… 52
Appendix ……………………………………………………… 59
Appendix I Question Investigation (I) ……………… 59
Appendix II Question Investigation (II) …………… 71
Appendix III Grade of Importance — Enterprise Intranet Web Site ……………………………………………………………… 73
Appendix IV Scores of Assessment — Virtual Example 80
Appendix V Scores of Assessment —Practical Case …84

[1] Bellman, R. E. and Zadeh, L. A. (1970), “Decision making in a fuzzy environment,” Management Science, Vol. 17, No. 4, pp. 141-164.
[2] Chen, S. J. and Hwang, C. L. (1992), Fuzzy Multiple Attribute Decision Making, Springer-Verlag, Berlin/Heidelberg/New York.
[3] Chen, T. Y. (1998), Static and Dynamic Analyses of Importance-Assessing for Evaluation Criteria and Applications on Transportation, Ph. D. Dissertation. Institute of Traffic and Transportation, National Chiao Tung University, ROC.
[4] Chen, T. Y. and Wang, J. C. (2001), “Identification of -fuzzy measures using sampling design and genetic algorithms,” Fuzzy Sets and Systems, Vol. 123, pp. 321-341.
[5] Chen, Y. W. and Tzeng, G. H. (2001), “Using fuzzy integral for evaluating subjectively perceived travel costs in a traffic assignment model,” European Journal of Operational Research, Vol. 130, pp. 653-664.
[6] Chiang, J. H. (1999), “Choquet fuzzy integral-based hierarchical networks for decision analysis,” IEEE Transactions on Fuzzy Systems, Vol. 7, No. 1, pp. 63-71.
[7] Chiou, H. K., and Tzeng, G. H. (2002), “Fuzzy multicriteria decision-making approach to analysis and evaluation of green engineering for industry,” Environmental Management (Accepted).
[8] Choquet, G. (1953), “Theory of capacities,” Annales de L’Institut Fourier, Vol. 5, pp. 131-295.
[9] Dempster, A. P. (1967), “Upper and lower probabilities induced by a multivalued mapping,” Annals Mathematical Statistics, Vol. 38, pp. 325-339.
[10] Dubois, D. and Prade, H. (1978), “Operations on fuzzy numbers,” International Journal of Systems Science, Vol. 9, No. 3, pp.613-626.
[11] Friedman, M., Wang, M. and Kandel, A. (1996), “Numericddal methods for calculating the fuzzy integral,” Fuzzy Sets and Systems, Vol. 83, pp.57-62.
[12] Grabisch, M. (1995), “Fuzzy integral in multicriteria decision making,” Fuzzy Sets and Systems, Vol. 69, pp. 279-298.
[13] Grabisch, M. (1996), “The application of fuzzy integrals in multicriteria decision making,” European Journal of Operational Research, Vol. 89, pp. 445-456.
[14] Hwang, C. L. and Yoon, K. (1981), Multiple Attribute Decision Making-Methods and Applications:A State-of-the-art Survey, Springer-Verlag, Berlin/Heidelberg/New York.
[15] Inoue, K. and Anzai, T. (June 1991), “A study on the industrial design evaluation based upon non-additive measures,” 7th Fuzzy System Symposium, Nagoya, Japan, pp. 521-524.
[16] Ishii, K. and Sugeno, M. (1985), “A model of human evaluation process using fuzzy measure,” International Journal of Man-Machine Studies, Vol. 22, pp. 19-38.
[17] Keeney, R. L. and Raiffa, H. (1976), Decision with Multiple Objectives: Preferences and Value Tradeoffs, New York: John Wiley and Sons.
[18] Klir, G. J. and Folger, T. A. (1988), Fuzzy Sets, Uncertainty, and Information, Prentice Hall, Englewood Cliffs, New Jersey.
[19] Lee, C., Liu, L. C. and Tzeng, G. H., “Hierarchical fuzzy integral evaluation approach for vocational education performance:case of junior colleges in Taiwan,” International Journal of Fuzzy Systems, Vol. 3, No. 3, pp. 476-485.
[20] Lee, K. M. and Leekwang, H. (1995), “Identification of -fuzzy measure by genetic algorithms,” Fuzzy Sets and Systems, Vol. 75, pp. 301-309.
[21] Lebesgue, H. (1966), Measure and the Integral, Holden-Day, San Francisco.
[22] Leszczyński, K., Penczek, P. and Grochulski, W. (1985), “Sugeno’s fuzzy measure and fuzzy clustering,” Fuzzy Sets and Systems, Vol. 15, pp. 147-158.
[23] Murofushi, T. and Sugeno, M. (1989), “An interpretation of fuzzy measure and the Choquet integral as an integral with respect to a fuzzy measure,” Fuzzy Sets and Systems, Vol. 29, pp. 201-227.
[24] Murofushi, T. and Sugeno, M. (1991), “A theory of fuzzy measures. Representation, the Choquet integral and null sets,” Journal of Mathematical Analysis and Applications, Vol. 159, pp. 532-549.
[25] Murofushi, T. and Sugeno, M. (1993), “Some quantities represented by the choquet integral,” Fuzzy Sets and Systems, Vol. 56, pp.229-235.
[26] Nakamori, Y. and Iwamoto, N. (1995), “Analysis of environmental evaluation structure by the Choquet integral model,” International Joint Conference of the 4th IEEE international Conference on Fuzzy Systems and the 2nd International fuzzy Engineering Symposium, Yokohama, Japan, pp. 695-700.
[27] Onisawa, T., Sugeno, M., Nishiwaki, M.Y., Kawai, H. and Harima, Y. (1986), “Fuzzy measure analysis of public attitude toward the use of nuclear energy,” Fuzzy Sets and Systems, Vol. 20, pp. 259-289.
[28] Ralescu, D. A. and Adams, G. (1980), “Fuzzy integral,” Journal of Mathematical Analysis and Applications, Vol. 75, No. 2, pp. 562-570.
[29] Ruoning, X. and Xiaoyan, Z. (1992), “Extensions of the analytic hierarchy process in fuzzy environment,” Fuzzy Sets and Systems, Vol. 52, pp. 251-257.
[30] Shafer, G. (1976), A Mathematical Theory of Evidence, Princeton University Press, Princeton.
[31] Shafer, G. (1987), “Belief functions and possibility measures,” In:Bezdek, J. C., ed., Analysis of Fuzzy Information (Vol. 1:Mathematics and Logic). CRC Press, Boca Raton, FL, pp. 51-84.
[32] Saaty, T. L. (1977), “A scaling method for priorities in hierarchical structures,” Journal of Mathematical Psychology, Vol. 15, No. 3, pp. 234-281.
[33] Saaty, T. L. (1980), The Analytic Hierarchy Process, McGraw-Hill, New York.
[34] Sugeno, M. (1974), Theory of fuzzy integrals and its applications, Ph. D. Dissertation, Tokyo Institute of Technology.
[35] Sugeno, M. (1977), “Fuzzy measures and fuzzy integrals:a survey,” Fuzzy Automata and Decision Processes. Amsterdam :North-Holland, pp. 89-102.
[36] Sugeno, M. and Kwon, S. H. (1995), “A clusterwise regression-type model for subjective evaluation,” Journal of Japan Society for Fuzzy Theory System, Vol. 7, No. 2, pp.291-310.
[37] Sugeno, M. and Terano, T. (1977), “A model of learning based on fuzzy information,” Kybernetes, Vol.6, pp. 157-166.
[38] Tanaka, K. and Sugeno, M. (1988), “A study on subjective evaluation of color printing images,” International Journal of Approximate Reasoning, Vol. 5, pp. 213-222.
[39] Tang, M. T., Tzeng, G. H. and Wang, S. W. (1999), “ A hierarchy fuzzy MCDM method for studying electronic marketing strategies in the information service industry,” Journal of International Information Management, Vol. 8, No. 1, pp. 1-22.
[40] Tahani, H. and Keller, J. M. (1990), “Information fusion in computer vision using the fuzzy integral,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 20, No. 3, pp. 733-741.
[41] Tsaur, S. H., Tzeng, G. H. and Wang, G. C. (1997), “The application of AHP and fuzzy MCDM on evaluation study of tourist risk,” Annals of Tourism Research, Vol. 24, No. 4, pp. 796-812.
[42] Wang, J. C., Chen, T. Y. and Shen, H. M. (2001), “Using fuzzy densities to determine the l-value for l-fuzzy measures,” Ninth National Conference on Fuzzy Theory and its Applications, pp. 54-59.
[43] Wang, J. and Wang, Z. (1997), “Using neural networks to determine Sugeno measures by statistics, “ Neural Networks, Vol. 10, No. 1, pp.183-195.
[44] Wang, Z. (1981), “Une class de measures floues-les quasi-measures,” Busefal, Vol. 6, pp. 28-37.
[45] Wang, Z. and Klir, G. J. (1992), Fuzzy Measure Theory, Plenum Press, New York.
[46] Wierzchoń, S. T. (1983), “An algorithm for identification of fuzzy measure,” Fuzzy Sets and Systems, Vol. 9, pp. 69-78.
[47] Yu, P. L. (1990), Forming Winning Strategies: An Integrated Theory of Habitual Domains, Spring-Verlag, New York.
[48] Zadeh, L. A. (1965), “Fuzzy sets,” Information and Control, Vol. 8, No. 2, pp. 338-353.
[49] Zadeh, L. A. (1978), “Fuzzy sets as a basis for a theory of possibility,” Fuzzy Sets and Systems, Vol.1, No. 1, pp. 3-28.
[50] Zeleny, M. (1982), Multiple Criteria Decision Making, McGraw-Hill, New York.
[51] Zhao, R. and Govind, R. (1991), “Algebraic characteristics of extended fuzzy numbers”, Information Science, Vol. 54, No. 1, pp. 103-130.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李湧清(民87),社區守望相助與犯罪預防,台灣警察專科學校,警專學報第二卷第五期,民87年,頁171-186。
2. 李俊輝(民89),從社區成人教育觀點探討公民參與政策執行的可行性做法,社教雙月刊,民89年4月,頁21-28。
3. 吳學燕(民78),台灣地區社會變遷與社會治安─警察人員對社會變遷過程中社會治安的認知,刑事科學,二十七期。
4. 余致力(民89),民意與公共政策:表達方式的釐清與因果關係的探究,中國行政評論,第9卷第4期,民89年9月,頁81-110。
5. 江明修、陳定銘(民88),我國基金會之問題與健全之道,中國行政評論,第8卷第3期,民88年6月,頁23-72。
6. 江明修、梅高文(民88),非營利組織與公共政策,社區發展季刊,第85期,民88年3月,頁6-12。
7. 吳英明(民83),公私部門協力推動都市發展:『高雄21』美國考察報告,空間雜誌,民83年3月,第56期,頁61-67。
8. 王順民(民88),非營利組織及其相關議題的討論─兼論台灣地區非營利組織的構造意義,社區發展季刊,第85期,民88年3月,頁36-55。
9. 徐世榮(民88),新社會運動、非營利組織、與社區意識的興起,中國行政,民88年6月,頁1-20。
10. 張世熒(民89),利益團體影響政府決策之研究,中國行政評論,第9卷第3期,民89年6月,頁23-52。
11. 陸宛蘋(民88),非營利組織之定義與角色,社區發展季刊,第85期,民88年3月,頁30-35。
12. 陳政智(民88),非營利組織中志願工作者之管理:從人力資源管理觀點,社區發展季刊,第85期,民88年3月,頁117-127。
13. 陳欽春(民89),社區主義在當代治理模式中的定位與展望,中國行政評論,第10卷第1期,民89年12月,頁183-215。
14. 黃淑清(民87),以方法論的觀點來看深度訪談研究法,輔導季刊,第34卷第1期,民87年3月,頁39-45。
15. 鄭怡世(民88),從非營利組織的觀點談台灣捐募法規應有的法律建制,社區發展季刊,第85期,民88年3月,頁93-104。