跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/19 03:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝政揚
研究生(外文):Cheng-yang Hsieh
論文名稱:油壓於運動模擬系統之影響性
論文名稱(外文):The Influence of Hydraulics in Motion Simulation System
指導教授:秦繼華秦繼華引用關係
指導教授(外文):J.H.Chin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:英文
論文頁數:75
中文關鍵詞:油壓運動模擬系統逆向運動ARX 模型系統評估整體加速度
外文關鍵詞:HydraulicsMotion Simulation SystemInverse KinematicsARX ModelSystem EvaluationWhole Acceleration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:1
在大多數的運動模擬系統中,多以油壓為動力源,但卻忽視油壓動態對整個系統的影響。因此在本研究中實際架設一組三軸飛行平台,以油壓作為動力系統,並探討其油壓誤差。
在本論文中,首先探討平台的工作空間及奇異點,使能設計合適的平台運動。然後以ARX模型做系統辨識,找出三個油壓系統(包括油壓缸及比例閥)的動態模型。並設計飛行動作,最後再以包含油壓動態之系統模型,模擬所設計之動作,以期預測真實狀況中,油壓在加速度與位置方面所造成的誤差,進而分析油壓系統對於平台運動的影響性。
本文的目的,除了強調油壓在運動模擬平台中所造成的影響,更希冀能藉由架設一完整的飛行平台系統,提供往後的平台運動設計者於設計前之一有用參考。

In most motion simulation systems, the hydraulics is utilized to be the driving power, but the influence of dynamics of hydraulic system is ignored. Hence, a 3 DOF flight simulator was constructed with the hydraulic power system, and the hydraulic errors are explored in this research.
In this thesis, the workspace and singular points of the manipulator were explored first for designing suitable motions for the simulator. For hydraulics, the ARX method was used to identify the dynamic models of three hydraulic systems (including hydraulic cylinders and proportional valves). Finally, the designed flight tasks were simulated with system model which contained the dynamics of hydraulics for predicting the errors of acceleration and position caused by hydraulics in reality. And then the influence of hydraulics on manipulator motions was evaluated by discussing human sense of acceleration and position accuracy.
The purpose of this thesis is not only to emphasize the influence of hydraulics on motion simulation system, but also to provide a useful reference for platform motion designers by constructing a complete flight simulator system.

摘要i
Abstractii
誌謝iii
Contentsiv
List of Tablesvi
List of Figuresvii
Nomenclaturex
Chapter 1 Introduction1
Chapter 2 System Models5
2.1 Kinematics and Mechanisms5
2.1.1 Inverse Kinematics5
2.1.2 Forward Kinematics7
2.1.3 Workspace7
2.1.4 Singularity8
2.1.5 Real Platform Mechanism9
2.2 Hydraulic System10
2.2.1 Hydraulic Power Units10
2.2.2 Filter and Accumulator11
2.2.3 Proportional Valve11
2.2.4 Hydraulic Cylinder13
2.3 Controller Interface14
2.4 ARX Method (Autoregressive External Input Model)14
Chapter 3 Simulations of Mechanism26
3.1 Workspace Simulation26
3.2 Singularity Simulation28
Chapter 4 Experiment Study and ARX Model37
4.1 Equipment37
4.2 Experiment of Flowrate38
4.3 Fitting of The ARX Model41
Chapter 5 System Evaluation and Discussion56
5.1 Simulation56
5.1.1 A Complete Flight Maneuver56
5.1.2 A Sudden Acceleration Maneuver57
5.2 Discussion58
5.2.1 Acceleration Sensitivity58
5.2.2 Position Accuracy60
Chapter 6 Conclusion72
References73

[1] N. A. Pouliot, C. M. Gosselin and M. A. Nahon, “Motion Simulation Capabilities of Three-Degree-of-Freedom Flight Simulators”, Journal of Aircraft, Vol. 35, No. 1, pp. 9-17, 1998.
[2] H. Pang and M. Shahinpoor, “Inverse Dynamics of a Parallel Manipulator”, Journal of Robotic Systems, Vol. 11, No. 8, pp. 693-702, 1994.
[3] Z. Huang, W. S. Tao and Y. F. Fang, “Study on the Kinematic Characteristics of 3 DOF In-Parallel Actuated Platform Mechanisms”, Mech. Mach. Theory, Vol. 31, No. 8, pp. 999-1007, 1996.
[4] Y. Fang and Z. Huang, “Kinematics of a Three-Degree-of-Freedom In-Parallel Actuated Manipulator Mechanism”, Mech. Mach. Theory, Vol. 32, No. 7, pp. 789-796, 1997.
[5] J. P. Merlet, C. M. Gosselin and N. Mouly, “Workspaces of Planar Parallel Manipulators”, Mech. Mach. Theory, Vol. 33, No. 1/2, pp. 7-20, 1998.
[6] C. M. Gosselin and M. Jean, “Determination of the Workspaces of Planar Parallel Manipulators with Joint Limits”, Robotics and Autonomous Systems, Vol. 17, pp. 129-138, 1996.
[7] M. H. Perng, “Lecture Notes on Stewart Platforms”, Institute of Power Mechanical Engineering, National Tsing-Hua University, 1998.
[8] John. J. Craig, “Introduction to Robotics, Mechanics & Control”, Addison-Wesley Publishing Company, 1988.
[9] P. Choudhury and a. Ghosal, “Singularity and Controllability Analysis of Parallel manipulators and Closed-Loop Mechanisms”, Mechanism and Machine Theory, Vol. 35, pp. 1455-1479, 2000.
[10] R. G. van Silfhout, “High-Precision Hydraulic Stewart Platform”, Review of Scientific Instruments, Vol. 70, No. 8, pp. 3488-3494, 1999.
[11] D. Li and S. E. Salcudean, “Modeling, Simulation, and Control of a Hydraulic Stewart Platform”, International Conference on Robotics and Automation, pp. 3360-3366, Proceeding of the 1997 IEEE.
[12] C. C. Nguyen, S. S. Antrazi and Z. L. Zhou, “Experimental Study of Motion Control and Trajectory Planning for a Stewart Platform Robot Manipulator”, International Conference on Robotics and Automation, pp. 1873-1878, Proceeding of the 1991 IEEE.
[13] N. I. Kim and C. W. Lee, “High Speed Tracking Control of Stewart Platform Manipulator via Enhanced Sliding Mode Control”, International Conference on Robotics & Automation, pp. 2716-2721, Proceeding of the 1998 IEEE.
[14] A. R. Plummer, “Non-Linear Control of a Flight Simulator Motion System”, WA-3-6, pp. 365-370, 1994 IEEE.
[15] M. A. Nahon, L. D. Reid and J. Kirdeikis, “Adaptive Simulator Motion Software with Supervisory Control”, Journal of Guidance, Control, and Dynamics, Vol. 15, No. 2, pp. 376-383, 1992.
[16] P. M. FitzSimons and J. J. Palazzolo, “Modeling of a One-Degree-of-Freedom Active Hydraulic Mount”, Journal of Dynamics Systems, Measurement, and Control, Vol. 118, pp. 439-442, 1996.
[17] J. Christian. Gerdes and J. K. Hedrick, “Brake System Modeling for Simulation and Control”, Journal of Dynamics Systems, Measurement, and Control, Vol. 121, pp. 496-503, 1999.
[18] Y. G. Lin, “Synchronization Problem of Hydraulic Cylinders Subject to Different Loads”, Masters Thesis, Institute of Mechanical Engineering, National Chiao-Tung University, Taiwan, R.O.C, 1995.
[19] C. L. Hsieh, “Study of Error-Compensational for Conventional and Multi-Axis Stewart Platform Based CNC Machines”, Master Thesis, Institute of Mechanical Engineering, Chung-Yuan University, Taiwan, R.O.C, 2000.
[20] 吳聰能, 陳文慶, “高速應答比例電磁閥應用於材料試驗機之研究”, 機械月刊第二十六卷第九期, pp. 343-346, 2000年9月號.
[21] 陳文慶, 陳義男, 吳聰能, “運動模擬與虛擬實境之整合研究”, 國立台灣大學造船及海洋工程學研究所博士論文, 2000.
[22] M. S. Sanders and E. J. McCormick, “Human Factors in Engineering and Design”, McGraw-Hill, INC., 1992.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top