跳到主要內容

臺灣博碩士論文加值系統

(54.161.24.9) 您好!臺灣時間:2022/01/17 12:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃志方
研究生(外文):Chih-Fang Huang
論文名稱:飛行模擬器之運動平台設計與運動視效匹配問題研究
論文名稱(外文):A Study on the Motion Base Design and Motion-Vision Matching for the Flight Simulation
指導教授:成維華成維華引用關係
指導教授(外文):Wei-Hua Chieng
學位類別:博士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:英文
論文頁數:152
中文關鍵詞:飛行模擬器虛擬實境運動控制
外文關鍵詞:flight simulatorvirtual realitymotion control
相關次數:
  • 被引用被引用:3
  • 點閱點閱:402
  • 評分評分:
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:1
本論文係針對飛行模擬器之平台設計準則、安全防護、運動與虛擬實境視效之匹配問題等作一整體性之研究。文中建立一套六自由度史都華運動平台,以勝任各種飛行載具在慣性空間運動之模擬。即時閉迴路動感法則系統僅需將驅動律作小幅度修改即可適合每個運動之應用。另外,以系統化之方法,由平面三自由度平行操作器之整個可達空間找出個別工作區間分支,經過工作區間分支的確認可定義出適合運動控制之工作區間,本論文並以一些例子討論分支跨越之情形,期能將此結果應用在複雜的六自由度運動平台之分析中。這些新的分析包括了飛行模擬平台工作空間之計算、靈巧工作空間之計算、奇異點分析、以及避免奇異點之動力學改善等,可提供運動平台、飛行模擬器,及空電系統與座艙人機界面整合之設計準則。
The dissertation discusses the motion base design criteria, safeguard system, and matching between motion and VR vision for a flight simulator. A six degree-of-freedom Stewart motion base is established, to perform subjected flying vehicle simulation in the inertial space. The real time close-loop motion cueing system needs only a minor tuning to the drive law for each motion application. A systematic method is used to distinguish the individual workspace branches from the entire reachable space of a planar three-degree-of-freedom parallel manipulator. Following the identification of workspace branches, a workspace suitable for the motion control is defined and discussed in some examples of the branch-crossing conditions, in order to expand the results to the complicated analysis of six-degree-of-freedom motion base. Several new methods, including workspace, dexterous workspace, singularity analysis, and the improved dynamics to avoid singularity are provided as the criteria for the motion base, flight simulator, and the integration between Avionics system of the flight simulator and the cockpit pilot vehicle interface.
CHAPTER 1 INTRODUCTION1
Section 1.1 General Introduction and Literature Review1
Section 1.2 The Architecture of the Dissertation7
CHAPTER 2 THE SYSTEM OVERVIEW OF THE FLIGHT SIMULATOR9
Section 2.1 Motion Base9
Section 2.2 PC-based Controller10
Section 2.3 Visual Display System14
Section 2.4 Virtual Reality System16
CHAPTER 3 THE DESIGN PROBLEM ANALYSIS OF A STEWART PLATFORM20
Section 3.1 Kinematics Analysis20
Section 3.2 Singularity Analysis24
Section 3.3 Reachable Workspace Analysis27
Section 3.4 Dexterous Workspace Analysis29
CHAPTER 4 WORKSPACE BRANCHES FOR THE PLANAR THREE-DEGREE-OF-FREEDOM PARALLEL MANIPULATOR31
Section 4.1 Formulation of Kinematic Equation and Numerical Solution31
Section 4.2 Branch ID34
Section 4.3 Sub-branch ID36
Section 4.4 Branch-distributed Workspace37
Section 4.5 Illustrative Examples37
CHAPTER 5 MOTION-VISION MATCHING ANALYSIS AND IMPLEMENTATION41
Section 5.1 The Motion Cueing System41
Section 5.2 Pulse Motion46
Section 5.3 Trajectory Planning49
Section 5.4 Flight Dynamics Analysis52
Section 5.5 The Foundation of Kinematic Singularity-Free Formulation for the Constrained Multibody System56
Section 5.6 Equations of Motion for the Constrained Multibody System Dynamics61
Section 5.7 Constrained Multibody System Dynamics for Stewart Platform65
Section 5.8 The Safeguard System for the Stewart Motion Base67
Section 5.9 Flight Simulator Implementation76
CHAPTER 6 CONCLUSION78
References81
[1] Stewart, D., "A Platform with Six Degrees of Freedom," Proc. of the Institute of Mechanical Engineers, London England, Vol. 180, pp. 371-386, 1965.
[2] Gough, V. E. and Whitehall, S. G., "Universal Tyre Test Machine," Proc 9th International Technical Congress, F.I.S.I.T.A., pp. 177, 1962.
[3] Gosselin, C., "Singularity Analysis of Closed-Loop Kinematic Chains," IEEE Transaction on Robotics and Automation, Vol. 6, No. 3, June 1990.
[4] Merlet, Jean-Pierre, "Singular Configuration of Parallel Manipulators and Grassmann Geometry," The International Journal of Robotics Research, Vol. 8, pp. 45-56, 1989.
[5] Yang, Yu-Neng, "Implementation of a Six D.O.F. Forced-Reflecting Teleoperator System with Fully Parallel Master-Slave Manipulators," PhD dissertation for M.E. Dept. of National Chiao Tung University, Chapter 2, 1996.
[6] Bessala, J., Bidaud, P., and Ben Ouezdou F., "Analytical study of Stewart platform workspaces," Robotics and Automation, Proceedings., IEEE International Conference on , Volume: 4 , 1996.
[7] Baarspul, M., "The generation of motion cues on a six-degree-of-freedom motion system," Delft University of Technology Report LR-248, Delft, The Netherlands, June 1977.
[8] Conrad, B., J. G. Douvillier, and S. F. Schmidt, "Washout circuit design for multi-degrees-of-freedom moving base simulators", AIAA Paper No. 73, pp. 929, September 1973.
[9] Reid, L. D., and Nahon, M. A., "Flight simulation motion-base drive algorithms: Part 1 - Developing and testing the equations," UTIAS Report No. 296, Institute for Aerospace Studies, University of Toronto, December 1985.
[10] Parrish, R. V., Dieudonne, J. E., and Martin, D. J., "Motion Software for a Synergistic 6 DOF Motion Base," NASA TN D-7350, December 1973.
[11] Nahon, M. A., and Reid, L. D., "Simulator motion-drive algorithms: A designer''s perspective," Journal of Guidance, Control, and Dynamics, Vol. 13, pp. 356-362, 1990.
[12] Borah, J., Young, L. R., and Curry, R. E., "Sensory Mechanism Modeling," Air Force Human Resources Laboratory, AFHRL-TR-77-70, 1977.
[13] Jex, H. R., Magdaleno, R. E., and Junker, A. M., "Roll tracking effects of g-vector tilt and various types of motion washout," Fourteenth Annual Conference on Manual Controls, University of Southern California; pp. 25-27, April 1978.
[14] Behi, F., Mecheregany, M., and Gagriel, K.J., "A Microfabricated Three-Degree-Of-Freedom Parallel Mechanism," Conference of Micro Electro Mechanical Systems, IEEE, pp. 159 -165, 1990.
[15] Gosselin, C., and Sefrioui, J., "Polynomial solutoins for the direct kinematic problem of planar three-degree-of-freedom parallel manipulators," Conference of Advanced Robotics,Vol.2 , pp. 1124-1129, 1991.
[16] Tsai, L. W., "Robot Analysis The Mechanics of Serial and Parallel Manipulators," John Wiley and Sons Inc., pp. 227-231, 1999.
[17] Erdman, A. G., and Sandor, G. N., "Mechanism Design: Analysis and Synthesis," volume 1, Prentice-Hall Inc., pp. 68-75, 1984.
[18] Hiller, R. L., Kecshemethy A., and Woernie C., "A Loop-Based Kinematical Analysis of Complex Mechanisms," ASME Conference, Columbus, Ohio, 1986.
[19] Wittenburg, J., "Dynamics of Systems of Rigid Bodies," B. G., Teubner,Stuttgar, 1977.
[20] Kane, T. R., and Levinson, D. A., Dynamics: "Theory and Application," McGraw-Hill Inc., 1985.
[21] Huston, R. L., "Multibody Dynamics," Butterworth-Heinemann Inc, New York, 1990.
[22] Hollerbach, J. M., "A Recursive Lagrangian Formulation of Dynamics and a Comparative Study of Dynamics Formulation Complexity," IEEE Trans. Syst. Man Cybern, Vol. 10, pp. 730-736, 1980.
[23] William, M. S., "On the Equivalence of Lagrangian and Newton-Euler Dynamics for Manipulator," International Journal Robotics Research, Vol. I, No. 2, pp. 60-70, 1982.
[24] Stepanenko, Y., and Vukobratovic, M., "Dynamics of Articulated Open-Chain Active Mechanisms", Math. Biosci., Vol. 28, pp. 137-170, 1976.
[25]Orin, D. E., McChee, R. B., and Hartoch, G., "Kinemaic and KineticAnalysis of Open-Chain Linkages Utilizing Newton-Euler Methods," Math. Biosci., Vol. 43, pp. 107-130, 1979.
[26]Luh, J. Y. S., Walker, M. W., and Paul, R. P. C., "On-line Computational scheme for Mechanical Manipulator," ASME J. of Dynamic System, Measurement Control Transaction, Vol. 102, pp. 69-76, 1980.
[27]Hollerbach, J. M., "Wrist-Partitioned inverse Kinematic Accelerations and Manipulator Dynamics," The International Journal Robotics Research, Vol. 2, pp. 61-76, 1983.
[28] Wang, J. T., and Huston, R. L., "Kane''s Equation with Undetermined Multipliers-Application to Constrained Multibody Systems," ASME J. of Applied Mechanics, Vol. 54, pp. 424-429, 1987.
[29]Wampler, C., Buffinton, K. and Shu-hui, J., "Formulation of Equations of motion for Systems Subject to Constraints," ASME J. of Applied Mechanics, Vol. 52, pp. 465-470, 1985.
[30]Nikravesh, P. E., "Computer Aided Analysis of Mechanical System," Prentice Hall, Englewood Cliffs, New Jersey, 1988.
[31] Haug, E. J., and McCullough, M. K., "A Variational-Vector Calculus Approach to Machine Dynamics," ASME J. Mechanism, Trans., and Automation in Design, Vol. 108, No. 1, pp.25-30, 1986.
[32]Bae, D. S., and Haug, E. J., "A Recursive Formulation for Constrained Mechanical System: Part II. Closed Loop System," Mechanics of Structures and Machines, Vol. 15, No. 4, pp. 481-506, 1987.
[33]Bae, D. S., Kuhl, J. G., and Haug, E. J., "A Recursive Formulation for Constrained Mechanical System: Part III. Parallel Processor Implementation", Mechanics of Structures and Machines, Vol. 15, No. 4, pp. 249-269, 1988.
[34] Bae, D. S., Hwang, R. S., and Haug, E. J., "A Recursive Formulation for Real-Time Dynamic Simulation of Mechanical System," ASME J. of Mechanical Design, Vol. 113, pp. 158-166, 1991.
[35]Sheth, P. N. and Vicker, J. J., "A Computer-Aided Design System for Mechanisms and Linkages," ASME J. Eng. for Ind., Vol. 94(2), pp. 454-464, 1972.
[36] Liang, C. G., and Lance, G. M., "A Differentiable Null Space Method for Constraint Dynamic Analysis," Journal of Mechanisms, Trans., and Automation in Design. Vol. 109, pp. 405-411, 1987.
[37] Sugimoto, N., "Safety Engineering on Industrial Robotics and their Standard Safety Requirements," Proceedings of the 7th International Symposium on Industrial Robot, pp. 461-468, 1977.
[38] Noro, K., "Occupational Health and Safety in Automation and Robotics," Taylor and Francis, pp. 175-195, 1987.
[39] Graham, J. H., "Safety, Reliability, and Human Factors in Robotic Systems," Van Nostrand Reinhold, pp. 116-131, 1991.
[40] ANSI, ANSI/RIA R15.06-1986, "American National Standard for Industrial Robots and Robot System - Safety Requirements," American National Standards Institute, New York, 1986.
[41] Percival, N., "Robot Technology and Applications," Springer-Verlag, Berlin, pp. 55-60, 1985.
[42] ISO, "ISO/DP 10218 Manipulating Industrial Robotics - Safety," International Organization for Standardization, Geneva, 1989.
[43] Craig, J. J., "Introduction to Robotics Mechanics and Control," 2nd ed., Addison Wesley, pp113-144, 1989.
[44] Peyton, James A., "Development of the ANSI/RIA Robot Safety Standard," Von Nostrand Reinhold, 1991.
[45] Beauchamp, Y., etc., "Determination of a Safe Slow Robot Motion Speed Based on the Effect of Environmental Factors," Human Factors, pp 419-427, 1991.
[46] Ascension Technology Corporation, "The Flock of Birds Position and Orientation Measurement System Installation and Operation Guide," Ascension Technology Corporation, Burlington, Vermont, pp 1-13, 1996.
[47] Vince, J., "Virtual Reality Systems," Addison Wesley, 1995.
[48] Burdea, G. C., "Force and Touch Feedback for Virtual Reality," John Wile & Sons, Chapter 1, 1996.
[49] Stoughton, R. S., and Arai, T., "A Modified Stewart Platform Manipulator with Improved Dexterity," IEEE Trans. on Robotics and Automation, Vol. 9, No. 2, pp166-172, April 1993.
[50] Griffis, M., and Duffy, J., "A Forward Displacement Analysis of a Class of Stewart Platforms," J. of Robot. Sys., Vol. 6, No. 6, pp. 703-720, 1989.
[51] Innocenti, C., and Parenti-Castelli, V., "Direct Position Analysis of the Stewart Platform Mechanism," Mech. Theory, Vol. 25, No. 6, pp. 611-621, 1990.
[52] Wen, F., and Liang, C., "Displacement Analysis of the 6-6 Stewart Platform Mechanism," Mechanism Machine Theory, Vol. 29, No. 4, pp. 547-557, 1990.
[53] Richard J. Heintzman, "Determination of force cueing requirements for tactical combat flight training devices," Simtec INC., VA, pp. 8-11, 1996.
[54] Friedman, S. N., "The 1553 Advanced Communication Engine (1553-ACE)," Aerospace and Electronics Conference, NAECON, Proceedings of the IEEE, National, Vol.2, pp. 428-433, 1992.
[55] Schuh, R. A., "An overview of the 1553 bus with testing and simulation considerations", Instrumentation and Measurement Technology Conference, IMTC-88, Conference, Record, 5th IEEE , pp. 20 -25, 1988.
[56] Laikin, M., "Wide amgle lens systems," SPIE Lens Design Conference, 237:530, 1980.
[57] Kingslake, R., "The Reversed Telephoto Objective," SMPTE, 76:203, 1966.
[58] Smith, W. J., "Modern Lens Design," Chapter 9, Mc Gram-Hill, Inc., 1992.
[59] Korsch, Dietrich, Reflective Optics, Academic Press, INC., CA, pp105-150, 1991.
[60] Focus Software, "ZEMAX Optical Design Program - User''s Guide," Focus Software INC., 2000.
[61] Nanua P. and Waldron, Kenneth J., "Direct Kinematic Solution of a Stewart Platform," Robotics and Automation, IEEE Transactions on, Vol. 6, pp. 438-444, 1990.
[62] James, M. L., Smith, G. M., and Wolford, J. C., "Applied Numerical Methods for Digital Computation," Fourth Edition, HapperCollins College Publishers, pp. 96-115, 1993.
[63] Williams, R. L. and Reinholtz, C. F., "Closed-form workspace determination and optimization for parallel robotic mechanisms," Proc. Conference of the ASME Mech. , Vol. 3, pp. 341-351, 1988.
[64] Waldron, K. J. and Hunt, K. H., "Series-parallel dualities in actively coordinated mechanism," in Robotics Res. 4 (R. Bolles and B. Roth, Eds.), pp. 175-181, 1988.
[65] Craig, J. J., "Introduction to Robotics Mechanics & Control," Addison-Wesley Publishing Company, pp. 98-99, 1986.
[66] Gosselin, C., and Angeles, J., "The optimum kinematic design of a planar three-degree-of-freedom parallel manipulator," Journal of Mechanisms, Transmissions and Automation in Design, vol. 110, March, pp. 35-41, 1988.
[67] Gosselin, C., and Angeles, J. "Singularity Analysis of Closed-Loop Kinematic Chains," Journal of IEEE Transmissions and Automation, vol. 6, no. 3. June, pp. 281-290, 1990.
[68] Hofman, L. G., and Riedel, S. A., "Manned engineering flight simulation validation, Part I: Simulation requirements and simulator motion system performance," AFFDL-TR-78-192, Part I, Air Force Flight Dynamics Laboratory, Wright-Patterson AFH, OH., February 1979.
[69] Roskam, J., "Airplane Flight Dynamics and Automatic Flight Controls," Roskam Aviation and Engineering Corporation, 1979.
[70] Nikravesh, P. E., "Computer-Aided Analysis of Mechanical Systems", Prentice-Hall, Inc, pp. 244, 1988.
[71] Maron, M. J. and Lopez, R. J., "Numerical Analysis- A practical Approach," Wadsworth Inc., pp. 434, 1991.
[72] Huisman, H., Verhoeven, R. P. M., Houten, Y. A., and Flohr, E. L., "Crew Interface for Future ATM," Avionics Systems Conference, 16th DASC., AIAA/IEEE Volume: 1-22 Vol.2 , pp. 6.3 -33-6.3-40, 1997.
[73] Richardson, C., and Schoultz, M., "Formation Flight System Design Concept," Digital Avionics Systems Conference, Proceedings., IEEE/AIAA 10th, pp. 18-25, 1991.
[74] Norton, R. L., "Design of Machinery," McGraw-Hill, Chapter 7, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳文中(民89)。營造e世代的教學環境:教室電腦應用網路多媒體配合班級教學。資訊與教育,77,15-21。
2. 吳文中(民89)。營造e世代的教學環境:教室電腦應用網路多媒體配合班級教學。資訊與教育,77,15-21。
3. 吳正己,李忠謀(民88)。從「資訊教育軟體與教材資源中心」之建置談網路教材資源的評鑑。竹縣文教,18,35-48。
4. 吳明隆(民88)。新時代新生電腦素養的探究。教育部電子計算機中心簡訊,8810,33-49。
5. 吳明隆(民88)。新時代新生電腦素養的探究。教育部電子計算機中心簡訊,8810,33-49。
6. 吳明隆(民88)。教室電腦網路應用於「小班教學精神內涵」的探究。資訊與教育,71,33-39。
7. 吳明隆(民88)。教室電腦網路應用於「小班教學精神內涵」的探究。資訊與教育,71,33-39。
8. 林奇賢(民86)。全球資訊網輔助學習系統:網際網路與國小教育。資訊與教育,58,2-11)
9. 林奇賢(民86)。全球資訊網輔助學習系統:網際網路與國小教育。資訊與教育,58,2-11)
10. 朱國光(民86)。我把世界變小了;電腦網路於國小的應用研究。國教之友49(1),42-46。
11. 朱國光(民86)。我把世界變小了;電腦網路於國小的應用研究。國教之友49(1),42-46。
12. 王全世(民89)。資訊科技融入教學之意義與內涵。資訊與教育,80,23-31。
13. 王全世(民89)。資訊科技融入教學之意義與內涵。資訊與教育,80,23-31。
14. [1]許覺良, “半導體前段製程設備發展技術之探討”, 金屬工業, 40-46頁, 86年11月號。
15. [1]許覺良, “半導體前段製程設備發展技術之探討”, 金屬工業, 40-46頁, 86年11月號。