跳到主要內容

臺灣博碩士論文加值系統

(52.203.18.65) 您好!臺灣時間:2022/01/19 15:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:凃ㄧ權
研究生(外文):Yi-Chuan Tu
論文名稱:銅及多孔性低介電常數材料的製程整合研究
論文名稱(外文):Integration of Copper and Porous Low Dielectric Constant Materials
指導教授:周長彬周長彬引用關係吳文發
指導教授(外文):Chang-Pin ChouWen-Fa Wu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:148
中文關鍵詞:多孔性整合
外文關鍵詞:copperporousintegration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:0
在極大型積體電路中,隨著元件尺寸的縮小,電阻電容的時間延遲及訊號傳遞不良等問題也越顯突出,為了改善這些問題,以銅取代鋁作為中間連接導線的材料以及選用低介電常數材料取代傳統二氧化矽作為隔離層的方式已成為時勢所趨。
為了克服銅金屬容易擴散的問題,勢必需要在銅與矽基材之間鍍上一層具有高溫熱穩定性、良好界面接合性以及低電阻係數的擴散障礙層,來達到抵抗銅原子擴散以及低功率消耗的目的。本研究選用氮化矽鉭作為擴散障礙層,並藉由經過高溫退火後片電阻值的變化、X光的繞射分析,以及二極體接面漏電流的測試等,來評估此擴散障礙層的性質。結果發現在氮流量比為20%時的電阻率為最低,而厚度在10 nm的情況下其熱穩定性可以達到650°C以上的高溫,在二極體接面漏電流的表現上經過600°C退火1小時後可以維持在10-6A/cm2的漏電流密度。
在目前廣受研究的低介電常數材料當中,利用中孔洞分子篩技術所製備的低介電常數材料薄膜由於具有熱穩定性佳,與傳統製程類似,以及可藉由調整孔洞大小改變材料本身之介電常數等優點,因此具有相當大的潛力。本研究選用台大化工製程實驗室所開發出來的低介電常數薄膜來作為與矽基材間的隔離層,期望改善並簡化其製程,利用低功率氧(O2)電漿在數秒內將有機模板分子移除,或是使用真空爐管在較低溫度下將有機模板分子抽離,企圖取代一般冗長而高溫(400°C)的鍛燒過程;另外,利用氫氣(H2)電漿進行表面處理以取代HMDS表面改質的方式也是本研究的要點之一。結果顯示氧電漿確實可移除模板分子,但並不能夠得到低介電常數的薄膜,而以真空爐管在高真空下加熱抽氣的方式並無法將模版分子自薄膜中移除;另外,以氫氣電漿來作表面改質並不成功。
為了整合製程,本論文也對barrier/SiO2/Si及Cu/barrier/SiO2/Si的結構進行熱循環與退火對其阻值及應力大小的影響探討,藉由X光的繞射分析、表面粗糙度的鑑定,以及穿透式電子顯微鏡的觀察,來對應力遷移現象的機制做較完整的描述。

As the devices become smaller and dimensions decline to sub-micron scale, the performance of integrated circuits will be significantly limited by the interconnect RC time delay. To alleviate these impacts, copper and low dielectric constant materials are used to replace aluminum and silicon oxide as the conduction and dielectric layers in metallization system.
Since copper diffuses fast in silicon substrate, a diffusion barrier with good thermal stability, contact resistance, and low resistivity is needed in Cu/Si contact system. Reactively sputtered Ta-Si-N layer was chosen as diffusion barrier in this study. Barrier capability against Cu diffusion was evaluated by sheet resistance, x-ray diffraction (XRD), transmission electron microscopy, and leakage current of junction diode. The Ta-Si-N film deposited at a N2 flow ratio of 20% has a low resistivity of 250 mW-cm. The Cu/Ta-Si-N (10 nm)/Si system is thermally stable at higher than 650°C. The leakage current density of junction diode is lower than 10-6A/cm2 after annealing at 600°C for one hour.
Due to its very low dielectric constant, high thermal stability, process compatibility, and controllable porosity, surfactant-templated mesoporous silica film is consider to be one of the most promising low-k dielectric materials. The porous silica film developed by NTU Chemical Engineering Process Laboratory was used as low-k dielectric layer. Low-power O2 plasma treatment or low-temperature vacuum curing was utilized to replace conventional high-temperature calcination to remove the template. O2 plasma removed the template successfully, however, dielectric constant of resulted silica film was higher. H2 plasma was used to modify the film to be hydrophobic. H2 plasma was not as effective as HMDS in surface modification.
To integrate copper and low-k dielectric, thermal stressing effects on resistance and stress of barrier/SiO2/Si and Cu/barrier/SiO2/Si systems were also evaluated by XRD, AFM, and TEM. Mechanism of stress migration is proposed and discussed.

摘要..........................................................I
Abstract....................................................III
Acknowledgment................................................V
Contents.....................................................VI
Figure Captions..............................................IX
Table Captions...............................................XV
Chapter 1 Introduction........................................1
1.1 General Background of Copper Metallization................1
1.2 Interface Reactions of Copper.............................3
1.3 Concerns of Copper Reliability............................6
1.4 Organization of This Thesis...............................7
Chapter 2 Literature Review..................................11
2.1 Properties of Diffusion Barrier Layers...................11
2.1.1 Types of Diffusion Barrier Layers......................12
2.1.2 Interfacial Reactions between Cu, Ta, TaN and Si Substrate....................................................14
2.1.3 Diffusion Barrier of Tantalum-Silicon-Nitrides.........15
2.2 Generation of Low Dielectric Constant Materials..........16
2.2.1 Scaling Effect.........................................17
2.2.2 Considerations of Low-k Materials......................18
2.2.3 Developments of Low-k Dielectrics......................19
2.2.4 Surfactant-Templated Process...........................20
2.2.4.1 Sols, Gels, and Gelation.............................20
2.2.4.2 Surfactants..........................................22
2.2.4.3 Fabrication Procedure................................23
Chapter 3 Ta-Si-N Films as Diffusion Barrier Layers in Copper Metallization................................................38
3.1 Introduction.............................................38
3.2 Experimental Procedures..................................38
3.3 Results and Discussion...................................39
3.3.1 Properties of Ta-Si-N Barrier Films....................39
3.3.2 Thermal Stability Cu/Ta-Si-N/Si........................40
3.3.3 Electrical properties of Cu/Ta-Si-N/n+-p...............41
3.3.4 Summary................................................43
Chapter 4 Optimization of Low Dielectric Constant Porous Silica Film.........................................................55
4.1 Introduction.............................................55
4.2 Experimental Procedures..................................56
4.3 Results and Discussion...................................58
4.3.1 Intrinsic Properties of Porous Silica Films............58
4.3.2 Process Optimization...................................59
4.3.2.1 Moisture Adsorption Recovering.......................59
4.3.2.2 H2 Plasma Effects....................................60
4.3.2.3 O2 Plasma Treatments.................................61
4.3.2.4 Vacuum Tube Calcination..............................63
4.3.3 Summary................................................64
Chapter 5 Integration of Barrier about Stress Migration......99
5.1 Generation of Stress Migration...........................99
5.2 Theoretical Background of Thin Film Stress..............100
5.3 Experimental Procedures.................................104
5.4 Results and Discussion..................................105
5.4.1 Ta, TaN/SiO2/Si stacks................................105
5.4.2 Cu/Ta, TaN/SiO2/Si stacks.............................108
5.4.3 Summary...............................................110
Chapter 6 Conclusions.......................................137
Appendix....................................................138
Reference...................................................143

[1]P. B. Ghate, Thin Solid Films, 93, 359 (1982)
[2]L. J. Fried, J. Havas, J. S. Lechaton, J. S. Logan, G. Paal and P. A. Totta, IBM. J. Res. Dev. 26, 362 (1982).
[3]P. L. Pai and C. H. Ting, IEEE, Electr. Dev. Lett.10, 423 (1989).
[4]C. H. Ting, M. Paunovic, P. L. Pai and G. Chiu, J. Electrochem. Soc. 136, 462 (1989).
[5]Jian Li, S. Q. Wang, J. W. Mayer and K. N. Tu, Phys. Rev. B39, 12367 (1989).
[6]E. G. Colgan, Mat. Sci. Rep. 5, 1 (1990).
[7]J. C. Liu and J. W. Mayer, J. Mat. Res. 4,336 (1989).
[8]J. C. Liu and J. W. Mayer, J. Mat. Res. 5. 334 (1990).
[9]Y. Shacham-Diamand, D. Hoffstetter, Jian Li and W. G. Oldham, Proc. Of Techon 1990, Oct. (San Jose, CA), 24, (1990).
[10]P. L. Pai, C. H. Ting, in Proc, IEEE, VLSI Multilevel Interconnecting Conf. (Santa Clara, CA), June, 258 (1989).
[11]S. Q. Wang, I. Raaijmakers, B. J. Burrow, S. Suthar, S. Redkar and K. B. Kim, J. Appl. Phys, 68, 5176 (1990).
[12]J. O. Olowolafe, Jian Li, J. W. Mayer and E. G. Colgan, Appl. Phys. Lett.58, 469 (1991).
[13]K. Holloway and P. M. Fryer, Appl. Phys. Lett.57, 1736 (1990).
[14]C. A. Chang, J. Appl. Phys. 66, 1163 (1989).
[15]C. A. Chang, D. S. Yee, and R. Petkie, Appl. Phys. Lett. 54, 2545 (1989).
[16]P. Madakson and J. C. Liu, J. Appl. Phys, 68, 2121 (1990).
[17]P. A. Flinn, D. S. Gardner and W. D. Nix, IEEE Transactions on Electron Devices, 34, 689 (1987).
[18]D. S. Gardner and P. A. Flinn, IEEE Transactions on Electron Devices, 35(12), 2160(1988).
[19]丁致遠,「利用模版試劑製備低介電常數薄膜的研究」,國立台灣大學,碩士論文,民國89年。
[20]歐陽德發,「製程條件對孔洞型低介電薄膜的影響」,國立台灣大學,碩士論文,民國90年。
[21]ASTM Phase Diagrams
[22]M. A. Nicolet, “Diffusion Barriers in Thin Films”, Thin Solid Films, 52 (1978) pp.415-433.
[23]M. H. Tsai, S. C. Sun, C. E. Tsai, S. H. Chung, and H. T. Chiu, “Comparison of CVD-TaN and PVD-TaN as diffusion barriers for copper metallization,” J. Appl. Phys. vol 79, no 9, pp.6932-8, 1 May 1996.
[24]T. Ikeda and H. Satoh, “Phase Formation and Characterization of Hard Coating in the Ti-Al-N System Prepared by the Cathodic Arc Ion Plating Method”., Thin Solid Films 195(1990) pp.99-110
[25]X. S. Elzbieta, J. S. Chen, J. S. Reid and M. A. Nicolet “Properties of Reactively Sputter-Deposited Ta-N Thin Films”., Thin Solid Films 236(1993) pp.347-351
[26]K. Holloway, P. M. Fryer, C. Cabral Jr., J. M. E. Harper, P. J. Bailey and K. H. Kelleher, “Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions,” J. Appl. Phys., 71(11), p.5433, 1992.
[27]P. J. Pokela, C. K. Kwok, E. Kolawa, S. Raud, M. A. Nicolet, “Performance of W100xNx between Si and Cu,” Appl. Surf. Sci., vol.53, p.364, 1991
[28]J. Y. Lee and J. W. Park, “Diffusion Barrier Property of Molybdenum Nitride Films for Copper Metallization”., Jpn. J. Appl. Phys. Vol.35(1996) pp.4280-4284
[29]M. A. Nicolet, I. Suni, and M. Finetti, “Amorphous metallic alloys in semiconductor contact metallizations”, Solid State Technol., vol 26, p.129, 1983.
[30]L. S. Hung, F. W. Saris, S. Q. Wang, and J. W. Mayer, ”Interaction of amorphous alloys with Si substrates”, J. Appl. Phys., vol.59, p.2416, 1986.
[31]P. J. Pokela, E. Kolawa, M. A. Nicolet, R. Ruiz,”Amorphous ternary Ta-Si-N diffusion barrier between Si and Au,” J. Electrochem. Soc, vol.138, no7, pp2125-9, July 1991.
[32]P. J. Pokela, E. Kolawa, M. A. Nicolet, R. Ruiz,”Characterization of the Al/ Ta-Si-N/Au metallization,” Thin solid films, vol.203, no2, pp259-66, 30 Aug. 1991
[33]S. P. Jeng, R. H. Havemann and M. C. Chang, “Process Integration and Manufacturing Issues for High Performance Multilevel Interconnect”, Advanced Metallization for Devices and Circuits-Science, Technology and Manufacturability Symposium, pp.25, 1994.
[34]W. K. Chim, ”Semiconductor Device and Failure Analysis Using Photon Emission Microscopy”
[35]C. A. Harper, “Electronic Packaging and Interconnection Handbook”,p11.34
[36]Semiconductor Industry Association, The National Technology Roadmap for Semiconductor, 1997.
[37]T. Seidel and B. Zhao, Mater. Res. Soc. Symp. Proc., vol.427, p.3, 1996.
[38]http://www.tsmc.com.tw/technology/index_literature.html
[39]http://www.umc.com/chinese/about/k.asp
[40]B. Zhao and M. Brongo, “Integration of Low Dielectric Constant Materials in Advanced Aluminum and Copper Interconnects”, Mat. Res. Soc. Symp. Proc. vol.564, pp.485, 1999.
[41]K. Maeda, Y. Nishimoto, N. Tokumasu and K. Fujino, Proceeding of the 6th Int. IEEE VLSI Multilevel Interconnection Conference (VMIC), p.382,1989
[42]K. Fujino, Y. Nishimoto, N.Tokumasu and K. Maeda, J. Electrochem. Soc., 137, pp.2883,1990.
[43]T. Homma and Y. Murao, Proceedings of the Int. IEEE VLSI Multilevel Interconnection Conference (VMIC), p.71,1993.
[44]T. Fukada, T. Akahori, International Conference on Solid State Devices and Materials, p.159,1993
[45]K. Fujino, Y. Nishimoto, N. Tokumasu and K. Maeda, J. Electrochem. Soc., pp.138, 550(1991)
[46]T. Usami and K. Shiokawa, Int. Conference on Solid State Devices and Material, pp.161(1993)
[47]Y. J. Mei, T. C. Chang, S. J. Chang, F. M. Pan, M. S. K. Chen, A. Tuan, S. Chou, and C. Y. Chang, Thin Solid Film, pp.308, 501(1997)
[48]L. Peters, Semiconductor International, Cover Story, p.64, Sept. 1998.
[49]Hiemenz P.C., ”Principles of Colloid and Surface Chemistry”, Marcel Dekker, New York (1977).
[50]J. P. Flory, Disc. Faraday soc., 57 (1974).
[51]J. P. Flory, ”Principles of Polymer Chemistry”, Cornell University Press, Ithaca, New York (1953).
[52]D. Seyferth, G. H. Wiseman, in “Ultrastructure Processing of ceramics, Glasses and Composites”, edited by L. L. Hench and D. R. Ulrich, Wiley, New York (1984) 265-271.
[53]H. Dislich, J. Non-Crystalline Solids, 57(1983), pp.371-388.
[54]D. L. Segal, J. Non-Crystalline Solids, 63(1984), pp.183-191.
[55]A. C. Pierre, Introduction to Sol-Gel Processing, pp.258-276.
[56]石親樺,「鉭及氮化鉭複合層應用於積體電路銅金屬化之擴散障礙特性研究」,國立交通大學,碩士論文,民國88年。
[57]吳其昌,「氮化鉭與氮化矽鉭在銅金屬化系統之擴散阻礙特性」,私立逢甲大學,碩士論文,民國89年。
[58]K. Holloway, P. M. Fryer, C. Cabral Jr., J. M. E. Harper, P. J. Bailey and K. H. Kelleher, “Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions”, J. Appl. Phys., 71(11), p.5433, 1992.
[59]D. Gerstenberg and C. J. Calbick, “Effects of Nitrogen, Methane, and Oxygen on Structure and Electrical Properties of Thin Tantalum Films”, J. Appl. Phys., 35(2), pp.402, 1964.
[60]D. M. Smith,J. M. Anderson, C. C. Cho, and B. E. Gnade, “Advanced in Porous Materials”, edited by S. Komarneni, D. M. Smith, and J. S. Beck, p.261,1995.
[61]C. Jin, S. List, W. Lee, C. Lee, J. D. Luttmer, and R. Havemann, in Advanced Metallization for ULSI Application, p.463, 1997.
[62]卓恩宗,「中孔洞二氧化矽低介電薄膜材料在積體電路製程上的應用與研究」,國立清華大學,碩士論文,民國90年。
[63]H. Okabayashi, “Stress migration in Aluminum Lines in Integrated Circuits”, Mat. Res. Soc. Symp. Proc. vol.337, 1994, Materials Research Society.
[64]K. N. Tu, J. W. Mayer and L. C. Feldman, Electronic Thin Film Science, p77~99.
[65]A. Paddock and J. R. Black, “Hillock Formation on Aluminum Thin Films”, Proc. Electrochem. Soc., pp98, 9 May, 1968.
[66]M. R. Miller and P. S. Ho, “Interfacial Adhesion Study for Low-k Interconnects in Flip-chip Packages”, 2000 Electronic Components and Technology Conference.
[67]Le Gall, C. A., Qu, J and McDowell, D. L., “Delamination Cracking in Encapsulated Flip Chips,” Proc 46th Electronic Components and Technology Conf, Orlando, FL, May.1996, pp. 430-434.
[68]H. J. Frost and M. F. Ashby, “Deformation-Mechanism Maps”.
[69]C. A. Harper, “Electronic Packaging and Interconnection Handbook”, p3.9.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 21、林文信、高志宏、李承昌,「台灣限(缺)電危機之挑戰與汽電共生系統」,能源季刊,第三十卷,第二期, 63~76頁,民國八十九年四月。
2. 14、許志義,「以分級電價解決缺電問題」,經濟前瞻季刊,第15期,頁79-81,民國七十八年。
3. 王振德(民74):回歸主流─其發展、涵義及相關的問題。特殊教育季刊,17,1-7。
4. 王柏壽(民78):國小學童受同儕接納的相關因素之研究。嘉義師院學報,2,99-152頁。
5. 王志全(民84):智能障礙者之社會技巧訓練。特教園丁,10(4),5-11。
6. 31、劉幹博,「電業固定成本分攤法之探討」,今日會計54,經濟部會計處編印。
7. 24、許志義、孫世婉,「台灣電力市場自由化及其管制制度之建立」,能源季刊,民國八十九年四月。
8. 吳淑美(民81):發展遲緩幼兒在回歸主流教育安置下社會互動、社會地位及發展能力之研究。特殊教育學報,7,45-83頁。
9. 何華國(民76):回歸主流的理論與實際。國教天地,71,15-16。
10. 林美和(民74a):中小學教師對中度智能不足學童的認識與態度研究。特殊教育研究學刊,1,85-102。
11. 林美和(民74b):社會大眾對中度智能不足者的認識與態度研究。社會教育學刊,14,59-78。
12. 林美和(民74c)推動回歸主流教育應有的認識。特殊教育季刊,17,8-11。
13. 胡致芬(民86):重度障礙者之統合教育。特殊教育季刊,62,16-21。
14. 孫淑柔(民84):從談隔離到完全包含談特殊兒童安置的新趨勢。特殊教育季刊,55,13-16。
15. 張秋珍(民81):影響智能不足者人際關係之因素及因應之道。特殊教育季刊,44,17-19。