跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/29 20:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施駿達
研究生(外文):Chun-Ta Shih
論文名稱:R-407C冷媒於水平雙套鰭管中流動沸騰熱傳及氣泡特性之實驗研究
論文名稱(外文):Flow Boiling Heat Transfer and Associated Bubble Characteristics of R-407C in a Horizontal Annular Finned Duct
指導教授:林清發林清發引用關係
指導教授(外文):Tsing-Fa Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:1
中文關鍵詞:R407C冷媒沸騰熱傳雙套鰭管氣泡特性
外文關鍵詞:R407CBoiling heat transferannular finned ductbubble
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
R-407C冷媒於水平雙套鰭管中流動沸騰熱傳及氣泡特性之實驗研究
學生:施駿達 教授:林清發 教授
國立交通大學 機械工程研究所
摘要
在這篇論文中針對R-407C冷媒於水平雙套鰭管中流動沸騰熱傳之實驗作了詳細的研究,並將水平雙套鰭管與水平雙套平滑管的熱傳特性作比較。此外,也藉由流場觀測研究氣泡於水平雙套鰭管中的特性。實驗參數的範圍,冷媒質通量G從150到250 kg/m2s,測試段熱通量q從5到45 kW/m2,平均蒸氣乾度Xm從0.2到0.8,入口過冷度DTsub為0到7 ℃,系統壓力設定在567,667,776和900 kPa (Tsat =0, 5℃, 10℃ and 15℃)。
在次冷態流動沸騰熱傳結果中,首先比較在加熱面三個不同軸向位置,分別是位於上游、中游及下游的局部沸騰曲線。其結果指出在鰭管下游的位置要達到沸騰起始 (ONB) 所需的壁面過熱度較低。在水平雙套鰭管中,沸騰磁滯現象及沸騰起始所產生的壁溫驟降(temperature undershoot)都不明顯。隨入口過冷度降低,其熱傳係數將增加。由流場觀測結果顯示在較高冷媒質通量下,較高冷媒速度將氣泡從加熱面上掃除,造成較小的氣泡脫離半徑。較高入口過冷度下,較低的冷媒液體溫度將抑制氣泡於加熱面上成長; 但隨熱通量增加,氣泡成長、合併及產生頻率也隨著增加。
在飽和態R-407C冷媒於水平雙套鰭管中之沸騰熱傳實驗研究中,由局部的沸騰曲線觀察無磁滯現象產生,且沸騰起始所需壁面過熱度也很小。熱傳係數隨質通量、熱通量的增加而增加。水平雙套鰭管能比水平平滑管增加熱傳係數30至40%。
而在水平雙套鰭管中R-407C冷媒的蒸發熱傳實驗研究中,蒸發熱傳係數將隨熱通量和冷媒質通量的增加而明顯增加,然而冷媒飽和溫度及平均蒸氣乾度對於熱傳係數的影響則幾乎可以忽略。
最後,我們把這個實驗中流動沸騰熱傳係數以及氣泡脫離半徑和產生頻率的資料作分析,求出經驗公式。

Flow Boiling Heat Transfer and Associated Bubble Characteristics of R407C in a Horizontal Annular Finned Duct
Student: Chun-Ta Shih Advisor: Prof. Tsing-Fa Lin
Institute of Mechanical Engineering
National Chiao Tung University
ABSTRACT
The subcooled and saturated flow boiling and evaporation heat transfer of R-407C in a horizontal annular duct with integral low fins on the outside surface of the heated inner pipe are experimentally investigated in this study. The heat transfer data for the finned duct are compared with those for the corresponding smooth duct. Besides, the associated bubble characteristics in the finned duct are also examined by inspecting the flow photos taken from the flow visualization. Experiments are carried out for the mass flux G varied from 150 to 250 kg/m2s, imposed heat flux q from 5 to 45 kW/m2, mean vapor quality from 0.2 to 0.8, and liquid inlet subcooling △Tsub from 0℃ to 7℃ for the system pressure set at 567 kPa, 667kPa, 776 kPa and 900 kPa corresponding respectively to the bubble point temperature of 0℃, 5℃, 10℃ and 15℃ for R-407C.
The subcooled flow boiling curves at three different axial locations along the heated surface are examined first. The results indicate that the required wall superheat to achieve ONB is lower at the more downstream location of the heated wall. The boiling hysteresis and the temperature undershoot at the onset of nucleate boiling (ONB) is insignificant in the finned duct. Thus the thermal shock caused by the temperature overshoot can be avoided by adding fins to the heating surface. The results for the subcooled flow boiling heat transfer coefficient indicate that the influence of the refrigerant pressure on the boiling heat transfer coefficient can be ignored. Besides, a higher imposed heat flux is required for the ONB at a higher inlet liquid subcooling. The subcooled boiling heat transfer coefficient is slightly higher for a lower inlet subcooling. The flow photos show that at a higher mass flux, the higher liquid refrigerant speed tends to sweep the bubbles away from the heated wall, resulting in a smaller bubble departure diameter. Moreover, at a higher inlet liquid subcooling the bubbles are less populated and are smaller due to the lower bulk liquid temperature. Furthermore, the imposed heat flux shows large effects on the bubble population, coalescence and generation frequency.
Next, the saturated flow boiling heat transfer of R-407C in the horizontal annular finned duct are investigated. The saturated flow boiling curves show that no boiling hysteresis is detected in the experiments and the wall superheat needed for the ONB is small. Besides, the boiling curves are mainly affected by the imposed heat flux and refrigerant mass flux. The boiling heat transfer coefficient increases with the imposed heat flux and mass flux. The heat transfer coefficient for the finned duct is about 30﹪to 40﹪over that for the smooth duct. This enhancement of the boiling heat transfer for the finned duct increases as the imposed heat flux is raised.
Finally, the evaporation heat transfer of R-407C in the horizontal annular finned duct is investigated. It is found that the evaporation heat transfer coefficient increases with the imposed heat flux and refrigerant mass flux. However, the variations of the evaporation heat transfer coefficient with the mean vapor quality is small for the smooth and finned ducts except at higher mass flux and imposed heat flux

TABLE OF CONTENTS
ABSTRACT i
TABLE OF CONTENTS iii
LIST OF FIGURES v
LIST OF TABLE ix
NOMENCLATURE x
CHAPTER 1 INTRODUCTION 1
1-1 Refrigerant R-407C— An Ozone
Friendly Refrigerant to Replace R-22 1
1-2 Subcooled Flow Boiling 2
1-3 Literature Review 3
1-4 The Objective of This Study 6
CHAPTER 2 EXPERIMENTAL APPARATUS AND PROCEDURES 9
2-1 Refrigerant Loop 9
2-2 Test Section 10
2-3 Water Loop for Pre-heater 11
2-4 Water-glycol Loop 11
2-5 DC Power Supply 11
2-6 Photographic system 12
2-7 Data Acquisition 12
2-8 Experimental Procedures 13
CHAPTER 3 DATA REDUCTION 21
3-1 Flow Boiling 21
3-2 Uncertainty Analysis 23
CHAPTER 4 SUBCOOLED FLOW BOILING HEAT TRANSFER AND ASSOCIATED BUBBLE CHARACTERISTICS 25
4-1 Subcooled Flow Boiling Curves 25
4-2 Subcooled Flow Boiling Heat Transfer
Coefficient 27
4-3 Bubble Characteristics 29
4-4 Correlation Equations 31
4-5 Concluding Remarks 32
CHAPTER 5 SATURATED FLOW BOILING HEAT TRANSFER AND ASSOCIATED BUBBLE CHARACTERISTICS 53
5-1 Saturated Flow Boiling Curves 53
5-2 Saturated Flow Boiling Heat Transfer
Coefficient 55
5-3 Bubble Characteristics 55
5-4 Correlation Equations 56
5-5 Concluding Remarks 58
CHAPTER 6 EVAPORATION HEAT TRANSFER 70
6-1 Evaporation Heat Transfer Coefficient 70
6-2 Correlation Equations 72
6-3 Concluding Remarks 72
CHAPTER 7 CONCLUDING REMARKS 83
REFERENCES 85

REFERENCE
1. S. G. Kandlikar, Heat transfer characteristics in partial boiling, fully developed boiling, and significant void flow regions of subcooled flow boiling, ASME J. Heat Transfer, 120 (1998) 395-401.
2. R. Hino and T. Ueda, Studies on heat transfer and flow characteristics in subcooled flow boiling-part1. boiling characteristics, Int. J. Multiphase flow, 11 (1985) 269-281.
3. H. Müller-Steinhagen, A. P. Watkinson, and N. Epstein, Subcooled-boiling and convective heat transfer to heptanes flowing inside an annulus and past a coiled wire: part I—experimental results, ASME J. Heat Transfer, 108 (1986) 922-927.
4. V. H. Del Valle M. and D. B. R. Kenning, Subcooled flow boiling at high heat flux, Int. J. Heat Mass Transfer, 28 (1985) 1907-1920.
5. A. Hasan, R. P. Roy and S. P. Kalra, Experiments on subcooled flow boiling heat transfer in a vertical annular channel, Int. J. Heat Mass Transfer, 33(1990) 2285-2293.
6. P. Sivagnanam, A. R. Balakrishnan and Y. B. G. Varma, On the mechanism of subcooled flow boiling of binary mixtures, Int. J. Heat Mass Transfer, 37(1994) 681-689.
7. A. H. Abdelmessih, F. C. Hooper and S. Nangia, Flow effects of bubble growth and collapse in surface boiling, Int. J. Heat Mass Transfer, 15 (1972) 115-125.
8. J. F. Klausner, R. Mei, D. M. Bernhard, and L. Z. Zeng, Vapor bubble departure in forced convection boiling, Int. J. Heat Mass Transfer, 36 (1993) 651-662.
9. G. E. Thorncroft, J. F. Klausner and R. Mei, An experimental investigation of bubble growth and detachment in vertical upflow and downflow boiling, Int. J. Heat Mass Transfer, 41 (1998) 3857-3871.
10. O. Zeitoun and M. Shoukri, Bubble behavior and mean diameter in subcooled flow boiling, ASME J. Heat Transfer, 118 (1996) 110-116.
11. L. H. Chien and R. L. Webb, Measurement of bubble dynamics on an enhanced boiling surface, Experimental Thermal and Fluid Science, 16 (1998) 177-186.
12. C. P. Yin, Y. Y. Yan, T. F. Lin and B. C. Yang, Subcooled flow boiling heat transfer of R-134a and associated bubble characteristics in a horizontal annular channel, Int. J. Heat Mass Transfer, 43 (2000) 1885-1896.
13. G. R. Kubanek and D. L. Miletti, Evaporation heat transfer and pressure drop performance of internally-finned tubes with refrigerant 22, J. Heat Transfer 101 (1979) 447-452.
14. L. M. Schiager, M. B. Pate and A. E. Bergies, Evaporation and condensation heat transfer and pressure drop in horizontal, 12.7-mm microfin tubes with refrigerant 22, J. Heat Transfer 112 (1990) 1041-1047.
15. S. M. Sami and B. Poirier, Comparative study of heat transfer characteristics of new alternatives to R-22, ASHRAE Trans. 120 (1997) 824-829.
16. S. M. Sami and B. Poirier, Two phase flow heat transfer of binary mixtures inside enhanced surface tubing, Int. Common. Heat Mass Transfer 25 (1998) 763-773.
17. C. C. Wang and C. S. Chiang, Two-phase heat transfer characteristics for R-22/R-407C in a 6.5-mm smooth tube, Int. J. Heat and Fluid Flow, 18 (1997) 550-558.
18. K. Seo and Y. Kim, Evaporation heat transfer and pressure drop of R-22 in 7 and 9.52 mm smooth/micro-fin tubes, Int. J. Heat Mass Transfer 43 (2000) 2869-2882.
19. X Liu, Condensing and evaporating heat transfer and pressure drop characteristics of HFC-134a and HCFC-22, J. Heat Transfer 119(1997) 158-163.
20. J. Yu, S. Momoki and S. Koyama, Experimental study of surface effect on flow boiling heat transfer in horizontal smooth tubes, Int. J. Heat Mass Transfer 42 (1999) 1909-1908.
21. C. S. Kuo and C. C. Wang, Horizontal flow boiling of R22 and R407C in a 9.52 mm micro-fin tube, Applied Thermal Engineering, 16 (1995) 719-731.
22. C. C. Wang, C. S. Chiang and D. C. Lu, Visual observation of two-phase flow pattern of R-22, R-134a, and R-407C in a 6.5-mm smooth tube, Experimental Thermal and Fluid Science, 15 (1997) 395-405.
23. T. Y. Choi, Y. J. Kim, M. S. Kim and S. T. Ro, Evaporation heat transfer of R-32, R-134a, R-32/134 and R-32/125/134a inside a horizontal smooth tube, Int. J. Heat Mass Transfer, 43 (2000) 3651-3660.
24. A. E. Bergles and W. M. Rohsenow, The determination of forced-convection surface-boiling heat transfer, J. Heat Transfer 86(1964) 365-372.
25. J. C. Chen, A correlation for boiling heat transfer to saturated fluids in convective flow, Ind. Engng. Chem. Proc. Des. Dev., 5(1966) 322-329.
26. K. E. Gungor and R. H. S. Winterton, A general correlation for flow boiling in tubes and annuli, Int. J. Heat Mass Transfer, 29 (1986) 351-358.
27. M. M. Shah, Generalized prediction of heat transfer during subcooled boiling in annuli, Heat Transfer Engineering, 4 (1983) 24-31.
28. S. G. Kandlikar, A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes. ASME J. Heat Transfer, 112 (1990) 219-228.
29. Manual of AlliedSignal Co. Ltd, Canada (1998)
30. ASHRAE. Fundamentals. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta, GA (1997).
31.S. J. Kline and F. A. McClintock, Describing uncertainties in single-sample experiments, Mech. Eng. 75 (1) (1953) 3-12.
32.C. C Wang, C. S. Chiang and J. G. Yu, An experimental study of in-tube evaporation of R-22 inside a 6.5-mm smooth tube, Int. J. Heat and Fluid Flow, 19 (1998) 259-269.
33. C. H. Chen, Experimental study of flow boiling and evaporation heat transfer of R-410A and bubble characteristics in horizontal annular duct, MS. thesis, National Chaio Tung university, Hsinchu, Taiwan, R.O.C., 2001.
34. K. Stephan, Heat transfer in condensation and boiling, English ed. translated by Curtis V. Green, Springer-Verlag Berlin Heidelberg, 1992, 126-139.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文