跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/29 21:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉忠
研究生(外文):Chung Yeh
論文名稱:質子交換膜中薄膜電極裝置內部傳輸現象之分析
論文名稱(外文):Analysis of Transport Phenomena within the Membrane Electrode Assembly (MEA) in the Proton Exchange Membrane Fuel Cell (PEMFC)
指導教授:曲新生曲新生引用關係
指導教授(外文):Hsin-Sen Chu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:96
中文關鍵詞:質子交換膜燃料電池可變孔隙度氣體擴散層燃料電池效能
外文關鍵詞:Proton Exchange Membrane (PEM) Fuel CellVariable porosityGas Diffuser Layer (GDL)Performance
相關次數:
  • 被引用被引用:1
  • 點閱點閱:452
  • 評分評分:
  • 下載下載:134
  • 收藏至我的研究室書目清單書目收藏:2
本文針對質子交換膜燃料電池中薄膜電極裝置內部傳輸現象進行分析與研究。假設穩態、等溫、且氣體僅有擴散效應,並將氣體擴散層中因電化學反應產生的液態水,使得氣體擴散層內部的孔隙度發生變化時,對整體電池效能的影響考慮進數學模式中。本文引入陰極氣體擴散層層數不同且各層孔隙度為常數,和其孔隙度分佈為不同的連續函數兩種不同概念來進行探討。
在陰極氣體擴散層層數不同,且各層孔隙度為常數的分析中,本文本文分別取四層、五層與六層三種不同層數進行探討。結果顯示,增加陰極氣體擴散層層數對於整體燃料電池效能的影響並不顯著。
在陰極氣體擴散層孔隙度分佈為不同連續函數的分析中,本文取五種不同模式的的連續孔隙度分佈函數來進行探討。結果顯示,五種不同模式的孔隙度分佈對於氧氣質量分率的影響,在較低的表面過電壓下並不明顯;然而,在較高的表面過電壓下,不同孔隙度分佈對於氧氣質量分率的影響就很明顯可以看出。因此,在較大的表面過電壓下不同孔隙度分佈對於氧氣質量分率的影響非常顯著而不可忽視。在表面過電壓等於0.36 V時,最高與最低的電流密度曲線差距竟高達最高電流密度曲線的16﹪,而最高與最低的薄膜相電位曲線差距竟高達最低薄膜相電位的24﹪。由此可知,陰極氣體擴散層中不同孔隙度分佈對於電池整體效能的影響,在高表面過電壓時是不可忽視的。此外,極化曲線的極限電流密度值會隨著氣體擴散層中孔隙度的增大而遞增,而功率密度曲線的最高值亦會隨著氣體擴散層中孔隙度的增大而遞增。因此,在對陰極氣體擴散層孔隙度的限制條件下,陰極氣體擴散層中孔隙度越大,所得到電池的效能就越高。
The primary concern of this study deals with the prediction of fuel cell performance with variable porosity of gas diffuser layer owing to the presence of liquid water in the gas diffuser layer. The half-cell model comprising expressions for the oxygen mass fraction distribution in the gas channel, gas diffuser, and catalyst layer, and current density and membrane phase potential in the catalyst layer and membrane derived from oxygen transport equations and Ohm’s law for proton migration is investigated with the finite-difference scheme numerically.
First, the gas diffuser layer was divided into four, five, and six parallel layers defined by different porosity coefficients to investigate that whether the cell performance would become if we increase the number of parallel layers of gas diffuser layers. The results reveal that the increase of parallel layers of gas diffuser layers has insignificant effects on cell performance. The limiting current density increases as the porosity of gas diffuser layer is increased.
Second, five different continuous models of porosity distribution are demonstrated. It is found that the differences of oxygen mass fraction among of five models become significant as the surface overpotential  increases. At  = 0.36, the difference between the highest and lowest current density can reach 16 of the highest one and the difference between the highest and lowest membrane phase potential is 24 of the lowest one. The limiting current density increases as the porosity of gas diffuser layer is increased. The peak power density occurs at larger current density as the porosity of gas diffuser layer is increased. The higher the porosity of gas diffuser layer is, the better cell performance can be obtained.
中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
符號說明 xii
一、緒論 1
1.1 燃料電池發展之歷史與簡介 1
1.2 燃料電池的基本原理 2
1.3 燃料電池的種類 3
1.4 文獻回顧 7
1.5 本文探討主題 14
二、理論分析 22
2.1 基本假設 22
2.2 統御方程式 23
2.2.1氧氣 23
2.2.2 薄膜相電位 26
2.2.3 電流密度 27
2.3孔隙度分佈函數 27
三、數值方法 35
3.1 權函數法 35
3.2 收斂條件 37
四、結果與討論 42
4.1 數值方法之驗證 43
4.1.1 格點測試 43
4.1.2 數值結果之討論與比較 44
4.2不同層數結果分析 44
4.3 不同孔隙度分佈函數結果分析 46
五、結論與建議 72
參考文獻 75
1. Carrette, L., Friedrich, K. A. and Stimming, U., “ Fuel Cells - Fundamentals and Applications,” Fuel Cells, Vol. 1, No. 1, pp. 5-39, 2001.
2. Larminie, J. and Dicks, A., Fuel Cell Systems Explained, John Wiley & Sons, LTD, 2001.
3. Mosdale, R. and Srinivasan, S., “ Analysis of Performance and of Water and Thermal Management in Proton Exchange Membrane Fuel Cells,” Electrochimica Acta., Vol. 40, No. 4, pp. 413-421, 1995.
4. Costamagna, P. and Srinivasan, S., “ Quantum Jumps in the PEMFC Science and Technology from the 1960s to the Year 2000 Part I. Fundamental Scientific Aspects,” J. Power Sources, Vol. 102, No. 1-2, pp. 242-252, 2001.
5. Costamagna, P. and Srinivasan, S., “ Quantum Jumps in the PEMFC Science and Technology from the 1960s to the Year 2000 Part II. Engineering, Technology Development and Application Aspects,” J. Power Sources, Vol. 102, No. 1-2, pp. 253-269, 2001.
6. Giner, J. and Hunter, C., “ The Mechanism of Operation of the Teflon-Bonded Gas Diffusion Electrode: A Mathematical Nodel,” J. Electrochem. Soc., Vol. 116, No. 8, pp. 1124-1130, 1969.
7. Ridge, S. L., White, R. E., Tsou, Y., Beaver, R. N. and Eisman, G. A., “ Oxygen Reduction in a Proton Exchange Membrane Test Cell,” J. Electrochem. Soc., Vol. 136, No. 7, pp. 1902-1909, 1989.
8. Iczkowski, R. P. and Cutlip, M. B., “ Voltage Losses in Fuel Cell Cathodes,” J. Electrochem. Soc., Vol. 127, No. 7, pp. 1433-1440, 1980.
9. Verbrugge M. W. and Hill, R. F., “ Ion and Solvent Transport in Ion-Exchange Membranes,” J. Electrochem. Soc., Vol. 137, No. 3, pp. 886-893, 1990.
10. Newman, J., Electrochemical Systems, Prentice-Hall, Englewood Cliffs, NJ, 1973.
11. Xie, G. and Okada, T., “ Water Transport Behavior in Nafion 117 Membranes,” J. Electrochem. Soc., Vol. 142, No. 9, pp. 3057-3062, 1995.
12. Xie, G. and Okada, T., “ Pumping Effects in Water Movement Accompanying Cation Transport Across Nafion 117 Membranes,” Electrochimica Acta, Vol. 41, No. 9, pp. 1569-1571, 1996.
13. Okada, T., Xie, G. and Meeg, M., “ Simulation for Water Management in Membranes for Polymer Electrolyte Fuel Cells,” Electrochimica Acta, Vol. 43, No. 14-15, pp. 2141-2155, 1998.
14. Okada, T., Xie, G., Gorseth, O., Kjelstrup, S., Nakamura, N. and Arimura, T., “ Ion and Water Transport Characteristics of Nafion Membranes as Electrolytes,” Electrochimica Acta, Vol. 43, No. 24, pp. 3741-3747, 1998.
15. Okada, T., “ Theory for Water Management in Membranes for Polymer Electrolyte Fuel Cells-Part 1. The Effect of Impurity Ions at the Anode Side on the Membrane Performances,” J. Electroanal. Chem., Vol. 465, pp. 1-17, 1999.
16. Okada, T., “ Theory for Water Management in Membranes for Polymer Electrolyte Fuel Cells-Part 2. The Effect of Impurity Ions at the Cathode Side on the Membrane Performances,” J. Electroanal. Chem., Vol. 465, pp. 18-29, 1999.
17. Divisek, J., Eikerling, M., Mazin, V., Schmitz, H., Stimming, U. and Volfkovich, Y. M., “ A Study of Capillary Porous Structure and Sorption Properties of Nafion Proton-Exchange Membranes Swollen in Water,” J. Electrochem. Soc., Vol. 145, No. 8, pp. 2677-2683, 1998.
18. Eikerling, M., Kharkats, Y. I., Kornyshev, A. A. and Volfkovich, Y. M., “ Phenomenological Theory of Electro-osmotic Effect and Water Management in Polymer Electrolyte Proton-Conducting Membranes,” J. Electrochem. Soc., Vol. 145, No. 8, pp. 2684-2699, 1998.
19. Amphlett, J. C., Baumert, R. M., Mann, R. F., Peppley, B. A., Roberge, P. R. and Harris, T. J., “ Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell — I. Mechanistic Model Development,” J. Electrochem. Soc., Vol. 142, No. 1, pp. 1-8, 1995.
20. Amphlett, J. C., Baumert, R. M., Mann, R. F., Peppley, B. A., Roberge, P. R. and Harris, T. J., “ Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell — II. Empirical Model Development,” J. Electrochem. Soc., Vol. 142, No. 1, pp. 9-15, 1995.
21. Fuller, T. F. and Newman J., “ Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cells,” J. Electrochem. Soc., Vol. 140, No. 5, pp. 1218-1225, 1993.
22. Nguyen, T. V. and White, R. E., “ A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells,” J. Electrochem. Soc., Vol. 140, No. 8, pp. 2178-2189, 1993.
23. Yi, J. S. and Nguyen, T. V., “ An Along-the —Channel Model for Proton Exchange Membrane Fuel Cells,” J. Electrochem. Soc., Vol. 145, No. 4, pp. 1149-1159, 1998.
24. Bernardi, D. M., “ Water-Balance Caculation for Solid - Polymer - Electrolyte Fuel Cells,” J. Electrochem. Soc., Vol. 137, No. 11, pp. 3344-350, 1990.
25. Bernardi, D. M. and Verbrugge, M. W., “ Mathematical Model of a Gas diffusion Electrode Bonded to a Polymer Electrolyte,” AICHE Journal, Vol. 37, No. 8, pp. 1151-1163, 1991.
26. Verbrugge, M. W. and Hill, R. F., “ Transport Phenomena in Perfluorosulfonic Acid Membranes during the Passage of Current,” J. Electrochem. Soc., Vol. 137, No. 4, pp. 1131-1138, 1990.
27. Bernardi, D. M. and Verbrugge, M. W., “ A Mathematical Model of Solid-Polymer-Electrolyte Fuel Cell,” J. Electrochem. Soc., Vol. 139, No. 9, pp. 2477-2490, 1992.
28. Singh, D., Lu, D. M. and Djilali, N., “ A Two-Dimensional Analysis of Mass Transport in Proton Exchange Membrane Fuel Cells,” Int. J. Engineering Science, Vol. 37, No. 4, pp. 431-452, 1999.
29. Rowe, A. and Li X., “ Mathematical modeling of proton exchange membrane fuel cells,” J. Power Sources, Vol. 102, No. 1-2, pp. 82-96, 2001.
30. Springer, T. E., Zawodzinski, T. A. and Gottesfeld, S., “ Polymer Electrolyte Fuel Cell Model,” J. Electrochem. Soc., Vol. 138, No. 8, pp. 2334-2342, 1991.
31. Springer, T. E., Wilson, M. S. and Gottesfeld, S., “ Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells,” J. Electrochem. Soc., Vol. 140, No. 12, pp. 3513-3526, 1993.
32. Yi, J. S. and Nguyen, T. V., “ Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors,” J. Electrochem. Soc., Vol. 146, No. 1, pp. 38-45, 1999.
33. He, W., Yi, J. S. and Nguyen, T. V., “ Two-phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields,” AICHE Journal, Vol. 46, No. 10, pp. 2053-2064, 2000.
34. Gurau, V., Liu, H. and Kakac, S., “ Two-Dimensional Model for Proton Exchange Membrane Fuel Cells,” AICHE Journal, Vol. 44, No. 11, pp. 2410-2422, 1998.
35. Um, S., Wang, C. Y. and Chen, K. S., “ Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells,” J. Electrochem. Soc., Vol. 147, No. 12, pp. 4485-4493, 2000.
36. Jordan, L.R., Shukla, A. K., Behrsing, T., Avery, N. R., Muddle, B. C. and Forsyth, M., “ Diffusion Layer Parameters Influencing Optimal Fuel Cell Performance,” J. Power Source, Vol. 86, No. 1-2, pp. 250-254, 2000.
37. Jordan, L.R., Shukla, A. K., Behrsing, T., Avery, N. R., Muddle, B. C. and Forsyth, M., “Effect of Diffusion-layer Morphology on the Performance of Polymer Electrolyte Fuel Cells Operating at Atmospheric Pressure,” J. Appl. Electrochem., Vol. 30, No. 6, pp. 641-646, 2000.
38. Giorgi, L., Antolini, E., Pozio, A. and Passalacqua E., “ Influence of the PTFE Content in the Diffusion Layer of Low-Pt Loading Electrodes for Polymer Electrolyte Fuel Cells,” ELECTROCHIMICA ACTA, Vol. 43, No. 24, pp. 3675-3680, 1998.
39. Wohr, M., Bolwin, K., Schnurnberger, W., Fischer, M., Neubrand, W. and Eigenberger, G.., “ Dynamic Modeling and Simulation of a Polymer Membrane Fuel Cell Including Mass Transport Limitation, “ Int. J. HYDROGEN ENERGY, Vol. 23, No. 3, pp. 213-218, 1998.
40. Gurau, V., Barbir, F. and Liu, H., “ An analytical Solution of a Half-Cell Model for PEM Fuel Cells,” J. Electrochem. Soc., Vol. 147, No. 12, pp. 4485-4493, 2000.
41. Benenati, R. F. and Brosilow, C. B., “ Void Fraction Distribution in Beds of Spheres,” AICHE J., Vol.8, No. 3, pp. 359-361, 1962.
42. Ridway, K. and Tarbuck, K. J., “ Radial Voidage Variation in Randomly-Packed Beds of Spheres of Different Size,” J. Pharm. Pharmacol., Vol. 18, No. 1, pp. 168-175, 1966.
43. Vafai, K. and Tien, C. L., “ Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media,” Int. J. Heat Mass Transfer, Vol. 24, No. 1, pp. 195-203, 1981.
44. Vafai, K. and Tien, C. L., “ Boundary and Inertia Effects on Mass Transfer in Porous Media,” Int. J. Heat Mass Transfer, Vol. 25, No. 8, pp. 1183-1190, 1982.
45. Vafai, K. Alkire, R. L. and Tien, C. L., “ An Experimental Investigation of Heat Transfer in Variable Porosity Media,” ASME J. Heat Transfer, Vol. 107, No. 6, pp. 642-647, 1985.
46. Lu, J. D., Flamant, G. and Variot, B., “ Theoretical Study of Combined Conductive, Convective and Radiative Heat Transfer Between Paltes and Packed Beds,” Int. J. Heat Mass Transfer, Vol. 37, No. 5, pp. 727-736, 1994.
47. Kamiuto, K., Iwamoto, M. and Nagumo, Y., “ Conbined Conduction and Correlated-Radiation Heat Transfer in Packed Beds,“ J. Thermophysics Heat Transfer, Vol. 7, No. 3, pp. 496-501, 1993.
48. Hunt, M. L. and Tien, C. L., “ Non-Darcian Convection in Cylindrical Packed Beds,” ASME J. Heat Transfer, Vol. 110, No. 4, pp. 378-384, 1988.
49. Mueller, G. E., “ Prediction of Radial Porosity Distribution in Randomly Packed Fixed Beds of Uniformly Size Spheres in Cylindrical Containers,” Chemical Eng. Sc., Vol. 46, No. 2, pp. 706-708, 1991.
50. Wu, J. W. and Chu, H. S., “ Combined Conduction and Radiation Heat Transfer in Plane-Parallel Packed Beds with Variable Porosity,” J. Quant. Spectrosc. Radiat. Transfer, Vol. 61, No. 4, pp. 443-452, 1999.
51. Bird, R. B., Stewart, W. E. and Lightfoot, E. N., Transport Phenomena, John Wiley & Sons, LTD, 1960.
52. ASHRAE Handbook, Fundamentals, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1981.
53. Lee, S. L., “ Weighting Function Scheme and Its Application on Multidimensional Conservation Equations,” Int. J. Heat Mass Transfer, Vol. 32, No. 11, pp. 2065-2073, 1989.
54. Lee, S. L., Chen, T. S. and Armaly, B. F., “ New Finite Difference Solution Methods for Wave Instability Problems,” Numer. Heat Transfer, Vol. 10, No. 1, pp. 1-18, 1986.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top