跳到主要內容

臺灣博碩士論文加值系統

(54.173.214.227) 您好!臺灣時間:2022/01/29 16:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫勝賢
研究生(外文):Sheng-Hsien Sun
論文名稱:混合空氣對流流經底部加熱水平漸縮扁平管道之浮力驅動渦流結構研究
論文名稱(外文):Buoyancy Driven Vortex Flow Structures in Mixed Convective Air Flow through a Horizontal Bottom Heated Convergent Flat Duct
指導教授:林清發林清發引用關係
指導教授(外文):Tsing-Fa Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:73
中文關鍵詞:渦流結構浮力水平漸縮管道混合空氣對流
外文關鍵詞:vortex flow structurebuoyancyhorizontal convergent flat ductmixed convective air flow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究藉由側板傾斜的底部加熱漸縮管道逐漸加速主流場速度,討論低雷諾數流場穩定性,實驗主要利用流場可視化及暫態溫度量測方法探討渦流的時空特性,本實驗結果並將與側板未傾斜矩形管道作比較,特別著墨在側板傾斜對縱向渦流(longitudinal roll)、橫向渦流(transverse roll)、混合渦流(mixed vortex roll)的效應,實驗操作參數範圍雷諾數介於2到30之間,雷利數則由2,500到10,000,針對側板5度角漸縮作大範圍的浮慣比(buoyancy-to-inertia ratio)研究。
由本實驗研究結果得知在低的浮慣比下,與矩形管道相比較後發現側板傾斜會導致縱向渦流發生的位置較為延後,渦流也較小,縱向渦流的消除也可以觀察出,但在高浮慣比下,側板傾斜導致的流場穩定性將變的不明顯。在間歇渦流流場(intermittent vortex flow)裡,所出現的微弱橫向渦流將逐漸被壓制,因此發現流場型態由間歇渦流流場轉變成規律縱向渦流流場。在漸縮管道裡的混合渦流流場及橫向渦流流場,則發現橫向渦流被擠壓而嚴重變形,其長度也較短,此外,縱向渦流尺寸也較小,再者,橫向渦流的大小沿著向下游流動而逐漸增加,並且也發現同對橫向渦流,其渦流大小不一的情形。最後,提出在漸縮管道裡縱向渦流發生位置、橫向渦流的尺寸及對流速度在軸向增加的經驗公式,並由流場組織圖解釋在漸縮管道裡,區分不同流場型態的邊界。

An experiment is carried out in the present study to investigate the possible stabilization of the low Reynolds number mixed convective vortex air flow by the main flow acceleration due to the reduction in the aspect ratio of the duct through the inclination of the sidewalls in a bottom heated horizontal flat duct. The detailed spatial and temporal characteristics of the vortex flow in the sidewall converging flat duct are procured by experimental flow visualization and transient temperature measurement. The results from the present experiment are compared with those for the corresponding sidewall nonconverging flat duct, which is designed as the “rectangular flat duct”. Particular attention is paid to examining how the sidewall tilting affects the longitudinal, transverse and mixed vortex flows. Experiments are conducted for the Reynolds number varying from 2 to 30 and Rayleigh number from 2,500 to 10,000 for the inclination angle of 5°, covering a wide range of the buoyancy-to-inertia ratio.
The results from the present study indicate that at low buoyancy-to-inertia ratios the sidewall inclination causes a slight delay in the onset of longitudinal vortex rolls and the longitudinal vortex rolls are slightly smaller, when compared with those in the rectangular flat duct. The elimination of the longitudinal vortex rolls in the duct core region is also seen. But at high buoyancy-to-inertia ratios the flow stabilization by the sidewall inclination is insignificant. In the intermittent vortex flows the appearance of the weak transverse roll is suppressed by the converging sidewalls. Thus the vortex flow pattern changes from the intermittent vortex flow to regular longitudinal vortex flow. For mixed vortex flow, the transverse vortex rolls in the duct core are squeezed to a larger degree to become somewhat bent and are shorter in the convergent flat duct. Besides, the longitudinal rolls in the sidewall region are smaller in size. Moreover, the transverse vortex rolls grow gradually in size as they move downstream. In the pure transverse vortex flow the sidewall inclination causes the transverse rolls again to grow in size in the downstream direction. In addition, the counter-rotating rolls in the same roll pair have very different size. Empirical correlations are provided for the onset locations of the longitudinal rolls and the size growth and convection speed increase of the transverse rolls in the axial direction in the convergent duct. A flow regime map is also given to delineate the boundaries separating different vortex flow patterns induced in the convergent duct.

CHAPTER 1 INTRODUCTION
CHAPTER 2 EXPERIMENTAL APPARATUS AND PROCEDURES 2.1 Experimental Apparatus
2.2 Analysis of Temperature Oscillation 2.3 Preliminary Investigation of Flow Field 2.4 Experimental Procedures
2.5 Analysis of Data Uncertainty
CHAPTER 3 INFLUENCES OF THE LONGITUDINAL VORTEX ROLLS BY
SIDEWALL CONVERGING
3.1 Longitudinal Vortex Rolls in Rectangular and
Convergent Ducts at Low Buoyancy
3.2 Stabilization of Longitudinal Vortex Flow by
Sidewall Inclination
3.3 Onset Locations of Longitudinal Vortex Rolls
CHAPTER 4 EFFECTS OF SIDEWALL CONVERGING ON INTERMITTENT, MIXED
AND TRANSVERSE ROLLS IN THE FLAT DUCT
4.1 Effects of Sidewall Inclination on Intermittent
Vortex Flow
4.2 Effects of Sidewall Inclination on Mixed
Longitudinal and Transverse Vortex Rolls
4.3 Effects of Sidewall Inclination on Transverse
Vortex Rolls
4.4 Flow Regime Map
CHAPTER 5 CONCLUDING REMARKS
REFERENCES

1.F. P. Incropera, Convective heat transfer in electronics
equipment cooling, ASME J. Heat Transfer 110, 1097-1111
(1988).
2.W. M. Kays and A. L. London, Compact heat exchangers, 3rd
edition, Mcgraw-hill, New York (1984).
3.M. L. Hitchman, and K. F. Jensen, Chemical Vapor Deposition
(Principle and Application), Chp.6 (1993).
4.W. S. Tseng, W. L. Lin, C. P. Yin, C. L. Lin and T. F. Lin,
Stabilization of buoyancy driven unstable vortex flow in
mixed convection of air in a rectangular duct by tapering its
top plate, ASME J. Heat Transfer 122, 58-65 (2000).
5.Y. Mori and Y. Uchida, Forced Convective heat transfer
between horizontal flat plates, Int. J. Heat Mass Transfer 9,
803-817 (1966).
6.M. Akiyama, G. J. Hwang and K. C. Cheng, Experiments on the
onset of longitudinal vortices in laminar forced convection
between horizontal plates, ASME J. Heat Transfer 93, 335-341
(1971).
7.Y. Kamotani and S. Ostrach, Effect of thermal instability on
thermally developing laminar channel flow, ASME J. Heat
Transfer 98, 62-66(1976).
8.S. Ostrach and Y. Kamotani, Heat transfer augmentation in
laminar fully developed channel flow by means of heating from
below, ASME J. Heat Transfer 97, 220-225(1975).
9.Y. Kamotani, S. Ostrach and H. Miao, Convective heat transfer
augmentation in thermal entrance regions by means of thermal
instability, ASME J. Heat Transfer 101, 222-226(1979).
10.K. C. Chiu, J. Ouazzani and F. Rosenberger, Mixed convection
between horizontal plates — II. Fully developed flow, Int.
J. Heat Mass Transfer 30, 1655-1662(1987).
11.G. J. Hwang and C. L. Liu, An experimental study of
convective instability in the thermal entrance region of a
horizontal parallel-plate channel heated from below, Can. J.
Chem. Eng. 54,521-525(1976).
12.J. M. Luijkx and J. K. Plattern, On the existence of
thermoconvective rolls transverse to a superimposed mean
Poiseuille flow, Int. J. Heat Mass Transfer 24, 1287-1291
(1981).
13.J. W. Deardorff, Gravitational instability between
horizontal plates with shear, Phys. Fluids 8, 1027-1030
(1965).
14.M. T. Ouazzanti, J. P. Caltagirone, G. Meyer and A. Mojtabi,
Etude numérique et experimental de la convection mixte entre
deux planes horizontaux, Int. J. Heat Mass Transfer 32, 261-
269(1989).
15.J. Ouazzani and F. Rosenberger, Three-dimensional modeling
of horizontal chemical vapor deposition: I MOVCD at
atmospheric pressure, J. of Crystal Growth 100,545-576(1990).
16.M. T. Ouazzani, J. K. Plattern and A. Mojitabi, Intermittent
patterns in mixed convection, Applied Scientific Research
51: 677-685 (1993)
17.M. Y. Chang and T. F. Lin, Vortex flow pattern selection and
temporal-spatial structures of transverse and mixed vortex
rolls in mixed convection of air in a horizontal flat duct,
Phys. Rev. E 54, 5146-5160 (1996).
18.C. H. Yu, M. Y. Chang, C. C. Huang and T. F. Lin, Unsteady
vortex roll structure in a mixed convective air flow through
a horizontal plane channel-a numerical study, Int. J. Heat
Mass Transfer 40, 505-518 (1997).
19.M. Y. Chang, C. H. Yu and T. F. Lin, Flow visualization and
numerical simulation of transverse and mixed vortex roll
formation in mixed convection of air in a horizontal flat
duct, Int. J. Heat Mass Transfer 40, 1907-1922 (1996).
20.M. Y. Chang, C. H. Yu and T. F. Lin, Changes of longitudinal
vortex roll structure in a mixed convective air flow through
a horizontal plane channel: an experimental study, Int. J.
Heat Mass Transfer 40, 347-363 (1997).
21.C. H. Yu, M. Y. Chang and T. F. Lin, Structure of moving
transverse and mixed rolls in mixed convection of air in a
horizontal plane channel, Int. J. Heat Mass Transfer 40, 333-
346(1997).
22.K. Moffat and K. F. Jensen, Complex flow phenomena in MOCVD
reactors, J. Crystal Growth 77, 108-119 (1986).
23.H. K. Moffat and K. F. Jensen, Three-dimensional flow
effects in silicon CVD in horizontal reactors, J. Electro —
Chem. Soc. 135, 459-471 (1988).
24.M. Y. Chang and T. F. Lin, Experimental study of aspect
ratio effects on longitudinal vortex flow in mixed
convection of air in a horizontal rectangular duct, Int. J.
Heat Mass Transfer 41, 719-733 (1998).
25.X. Nicolas, J. M. Luijkx and J. K. Platten, Linear stability
of mixed convection flows in horizontal rectangular channels
of finite transversal extension heated from below, Int. J.
Heat Mass Transfer 43, 589-610 (2000).
26.C. Gau, C. W. Liu, T. M. Huang, and W. Aung, Secondary flow
and enhancement of heat transfer in horizontal parallel-
plate and convergent channels heating from below, Int. J.
Heat Mass Transfer 42, 2629-2647 (1999).
27.R. K. Shah and A. L. London, Laminar Flow Forced Convective
in ducts, Academic Press, New York, 196-198 (1987).
28.S. J. Kline and F. A. McClintock, Describing uncertainties
in single-sample experiments, Mechanical Engineering 75, 3-
12 (1953).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李輝(民83)。影響國小兒童自我觀念發展之重要因素。國民教育,34,9(10),6-9。
2. 林香君(民86)在「破車輪」與「劇場」之間。完形團體焦點的選擇。諮商與輔導,143,11-16。
3. 林建平(民80)。完形取向法在國小班級輔導活動上的應用。輔導月刊,27(3、4) ,36-39。
4. 何麗儀(民86)。完形取向與教師情緒管理。諮商與輔導,143,23-27。
5. 白博仁(民88)。國小學生的性別角色及其與自我概念的關係之研究。國立屏東師範學院國民教育研究所碩士論文。
6. 38.戴照煜,“加入特約經營的利與弊”,突破雜誌,第37期,頁29-34。
7. 施香如(民82)。從完形取向法的觀點談諮商過程中的「覺察」。諮商與輔導,91,31-34。
8. 許瑛玿(民85)。完形取向理論之界限概念在團體諮商中的應用。學生輔導,44,104-113。
9. 陳李綢(民72)。國小兒童自我概念發展之研究。測驗年刊,30,93-100。
10. 陳滿樺(民81)。對完形取向中的「完形」及「輔導關係」的詮釋驗證。輔導月刊,28(3、4),12-14。
11. 陳錫銘(民81)。健康的完形經驗過程與抗拒接觸的不良形式。諮商與輔導,77,33-35。
12. 陳錫銘(民81)。從完形取向法談此時此刻的察覺。輔導月刊,28(3、4),1-7。
13. 黃淑珍(民84)。覺察完形輔導團體中個人改變的契機。測驗與輔導,133,2744-2746。
14. 鄭如安(民86)。以太極拳的觀點詮釋完形學派。諮商與輔導,143,28-30。
15. 魏麗敏(民82)。完形心理學經驗圈之理論探索。 輔導月刊,29(1、2), 18-21。