跳到主要內容

臺灣博碩士論文加值系統

(23.20.20.52) 您好!臺灣時間:2022/01/24 19:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡明倫
研究生(外文):Ming-Lun Tsai
論文名稱:室內裝修材料之火災模擬
論文名稱(外文):The Simulation of Fire Growth on Combustible Lining Materials in Enclosures
指導教授:陳俊勳陳俊勳引用關係
指導教授(外文):Chiun-Hsun Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:67
中文關鍵詞:裝修材料熱釋放率熱氣層溫度天花板表面溫度Karlsson model
外文關鍵詞:Lining materialsheat release ratehot gas temperatureceiling surface temperatureKarlsson model
相關次數:
  • 被引用被引用:4
  • 點閱點閱:657
  • 評分評分:
  • 下載下載:223
  • 收藏至我的研究室書目清單書目收藏:2
本研究嘗試修正瑞典防火工程學者Dr. Bjorn Karlsson所發展出的火災模式,並且與兩種不同房間尺寸,五組天花板與牆面均為同一裝修材料之房間火災測試作比較,探討房間內壁裝材料之延燒現象。本研究以燃燒器後方牆面的細部引燃、修正天花板所受的熱幅射通量與上層氣體的有效熱傳係數,以及考慮房間熱層之幅射熱傳來改善Karlsson Model的缺失如初期熱釋放率的峰值、燃燒器輸出改變時的引燃延遲、天花板表面溫度和上層熱氣層溫度估算的誤差。將改善後的火災模式與實驗資料、Karlsson model的模擬值做一詳盡之比較。比較結果發現,在全尺寸房間火災測試上case 1 中程式模擬後期其火勢有衰退之現象,與實驗中火勢持續成長相反,這是因為木粒片水泥板會因高溫而變形,使火焰延燒至裝修板材背面造成額外之延燒並使火勢更加擴大,而最後甚至導致產生閃燃之現象,原因是因為程式本身僅考慮火焰在材料之單面延燒,並沒有考慮材料變形之機制所造成。而改善後的模式在case 2與case 3的模擬結果和Karlsson model 比較,除了在上層氣體溫度的模擬上前600秒會有低估之現象,與實驗值有較好之配合。在縮小尺寸之模型箱( case 4 與case 5 )的模擬上,則是發現在模擬上層氣體溫度有較Karlsson model有相當明顯之改善。
In this thesis, an extensive modification is made from the original Karlsson model [1]. The modifications include the division of material into many strips, utilization of the correlation for the convective and radiant heat transfer coefficient, increase of the incident heat flux to ceiling when the burner output is at the transition in full-scale fire tests, and incorporation of radiative heat exchange model in the calculation of hot gas temperature in upper layer. The predicted results are presented and compared with the experimental measurements of room fire tests [3~5], which consist of three full-scale room and two reduced-scale room fire tests. The shortcomings in Karlsson model, such as the initial peak and ignition delay appearing in heat release rate profiles and the inaccuracies of ceiling surface and upper layer gas temperatures, are improved by these modifications. From the comparisons between the fire tests and models, for full-scale tests both Karlsson and present models predict a decay of fire growth in later stage, whereas fire growth keeps growing in the experiment of case 1. It is because the particleboard was deformed, flame could spread into the backside of lining materials to increase the burning intensity and led to a flashover. There is no such mechanism in the present and Karlsson models, which only describe the flame spread along the surfaces. The present model shows a better prediction than that of Karlsson model in the cases lined with better fireproof materials, such as case 2 and 3, except the one in hot gas temperature before 600 sec.. In reduced-scale fire tests, the present model also performs better in case 4 and 5, especially in the prediction of hot layer gas temperature, whereas the corresponding one by Karlsson model is overshot.
Contents
ABSTRACT(CHINESE) Ⅰ
ABSTRACT(ENGLISH) Ⅱ
CONTENTS Ⅳ
LIST OF TABLES Ⅵ
LIST OF FIGURES Ⅶ
NOMENCLATURE Ⅸ
CHAPTER 1 INTRODUCTION 1
1-1 MOTIVATION 1
1-2 LITERATURE SURVEY 3
1-3 PROBLEM DESCRIPTION 7
CHAPTER 2 MATHEMATICAL MODEL 9
2-1 INTRODUCTION 9
2-1 SUB-MODELS OF KARLSSON MODEL 9
《2-2.1》Ignition time 9
《2-2.2》Flame spread velocity 11
《2-2.3》Calculation of gas temperature 13
《2-2.4》Surface temperature 16
《2-2.5》Estimation of heat release rate 17
2-3 THE SUMMARY OF MODEL MODIFICATION BY PRESENT STUDY 18
2-4 INPUT EXPERIMENTAL DATA 20
《2-4.1》Cone calorimeter 20
《2-4.2》LIFT 20
CHAPTER 3 RESULTS AND DISCUSSIONS 22
3-1 FULL-SCALE ROOM FIRE TEST 23
《3-1.1》Experimental set up 23
《3-1.2》Simulation results and comparisons with fire tests 24
3-2 REDUCED-SCALE ROOM FIRE TESTS 30
《3-2.1》Experimental set up 30
《3-2.2》Simulation results and comparisons with fire tests 31
CHAPTER 4 CONCLUSIONS 34
REFERENCE 37
FIGURES 40
LIST OF TABLES
Table 2-1 Radiant heat absorbed by the upper layer 15
Table 2-2 Summary of modifications 19
Table 3-1 Properties of each lining materials. 22
Table 3-2 Description of full-scale room tests. 23
Table 3-3 Description of reduced-scale room tests. 31
LIST OF FIGURES
Fig.1 ISO 9705 Room-corner test 40
Fig.2 Flow chart of Karlsson Model 41
Fig.3 Wind-aided flame spread. 42
Fig.4 Constant flux in the region Xp < X < Xf.. 42
Fig.5 Two zone model in Ksrlsson Model 43
Fig.6 Energy balance for the hot layer in an enclosure 44
Fig.7 Net radiant heat absorbed by upper gas layer 45
Fig.8 Heat flux distribution on the wall behind the burner 46
Fig.9 The schematic view of Cone Calorimeter 47
Fig.10 The schematic view of LIFT apparatus……….…………...…….48
Fig.11 Simulation results (case 1) 49
Fig.12 Case 1: Rate of heat release..…………………………………….50
Fig.13 Case1: Hot layer gas temperature 51
Fig.14 Case 1: Ceiling surface temperature 52
Fig.15 Heat release rate of paper faced gypsum board 53
Fig.16 Case 2: Rate of heat release 54
Fig.17 Case2: Hot layer gas temperature 55
Fig.18 Case 2: Ceiling surface temperature 56
Fig.19 Heat release rate of Paper faced gypsum board
+ FR wallpaper 57
Fig.20 Case 3: Rate of heat release 58
Fig.21 Case3: Hot layer gas temperature 59
Fig.23 The sketch of small-scale room test 60
Fig.24 The geometry of small-scale room 61
Fig.25 Case 4: Rate of heat release 62
Fig.26 Case4: Hot layer gas temperature 63
Fig.27 Case 4: Ceiling surface temperature 64
Fig.28 Case 5: Rate of heat release 65
Fig.29 Case 5: Hot layer gas temperature 66
Fig.30 Case 5: Ceiling surface temperature 67
REFERENCE
[1] Karlsson, B., ”Modeling Fire Growth on Combustible Lining Materials in Enclosures”, Report TVBB-1009, Department of Fire Safety Engineering, Lund University, Sweden, 1992.
[2] Sung, M.C. and Chen, C.H., “A Preliminary Study of Karlsson Model”, Institute of Mechanical Engineering College of Engineering, National Chiao Tung University, 1998.
[3] Wang, S.F. and Chen, C.H., “The Study of Full-Scale Room Fire Test Method”, Institute of Mechanical Engineering College of Engineering, National Chiao Tung University, 1996.
[4] Huang, L.S. and Lin, C.Y., “The Effect of Incombustible Materials with Different Assembly for Fire Behavior With Closed Space”, Institute of Construction Engineering, National Taiwan University of Science and Technology, 1996.
[5] Chen, Y.S. and Chen, C.H., “The Study of Combustibility of Interior Finish Maters and Upholstered Furniture in Full-Scale Room Fire Tests”, Institute of Mechanical Engineering College of Engineering, National Chiao Tung University, 1997.
[6] Tong, M.C. and Chen, C.H., “The Study of Ignitability and Flame Spread for Wall-Covering Materials”, Institute of Mechanical Engineering College of Engineering, National Chiao Tung University, 1995.
[7] Chen, C.S. and Chen, C.H., “The Study of Surface Flammability and Combustibility of Interior Finish Materials of Room in Bench-Scale Tests”, Institute of Mechanical Engineering College of Engineering, National Chiao Tung University, 1997.
[8] ISO 5658 part 2: “Lateral Surface Spread of Flame on Building Products with Specimen in Vertical Configuration”1995.
[9] ASTM E1321-93: “Standard Test Method for Determining Material Ignition and Flame Spread Property”, 1993.
[10] ISO 5660, “Fire Tests Reaction-to-Fire-Rate of Heat Release from Building Products”, 1995.
[11] CNS 6532, “Method of Test for Incombustibility of Internal Finish Material of Building”, 1993.
[12] Dillon, S.E., Kim, W.H. and Quintiere, J.G., “Determination of Properties and the Prediction of the Energy Release Rate of Materials in the ISO 9705 Room/Corner Test”, NIST-GCR-98-753.
[13] Dillon, S.E., “Analysis of the ISO 9705 Room/Corner Test: Simulations, Correlations and Heat Flux Measurements”, NIST-GCR-98-756.
[14] Dembsey, N.A., Pagni, P.J. and Williamson, R.B., “Compartments with Models”, Fire Safety Journal, Vol.25, 187-227, 1995.
[15] Janssens, M.L., “A Simple Model of the ISO 9705 Ignition Source”, Southwest Research Institute.
[16] Quintiere, J.G., “A Simulation Model for Fire Growth on Materials Subject to a Room-Corner Test”, Fire Safety Journal, Vol.20, 313-339, 1993.
[17] Beyler, C., “Modeling Fire Growth in Room/Corner Configurations”, NISTIR 6588, 2000
[18] Mccaffrey, B.J., Quintiere, J.G. and Harkleroad, M.F., “Estimating Room Temperatures and Likelihood of Flashover Using Fire Test Data Correlations”, Fire Technology, Vol.17, 98-119, 1981.
[19] Glenn, P.F., “Computing Radiative Heat Transfer Occurring in a Zone Fire Model”, NISTIR 4709, 1991.
[20] Rockett, J.A., “Fire Induced Gas Flow in an Enclosure”, Combustion Science and Technology, Vol.12, 165-175, 1976.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 洪若和(民82)。兒童自我概念量表電腦化操作簡介。國教之聲,27(2),43-50。
2. 12.徐中琦、張鐵軍,「台灣地區本國銀行規模經濟與範圍經濟之實證研究」,臺灣銀行季刊,第44卷第1期,民國82年。
3. 3.王親仁,「金融機構規模經濟與範圍經濟之實證分析」,基層金融,第31期,民國84年。
4. 2.王國樑、余威廷,「台灣證券業規模與多樣化經濟之探討」,證券市場發展,第7卷第三期,民國84年。
5. 4.吳顯宗,「金融控股公司與綜合銀行制度之研究」,財稅研究,第29卷第4期,民國86年。
6. 洪若和(民84)。國小兒童自我概念之相關研究。臺東師院學報,6,91-134。
7. 許維素(民83)。阿德勒學派「家庭組型」的再認識。輔導季刊,30(1),31-40。
8. 黃堅厚(民74)。「社會興趣」的測量及其和其他人格品質的相關。教育心理學報,18,1-16。
9. 楊妙芬(民84)。單親兒童非理性信念、父母管教態度、自我概念與人際關係之研究。屏東師院學報,8,71-110。
10. 蔡順良(民75)。國中生自我肯定與社會興趣之關係暨性別因素對不同情境自我肯定在友伴接納和人際吸引方面之影響。教育心理學報,19,149-76。
11. 盧欽銘(民68)。我國兒童及青少年自我觀念的發展。師大教育心理學報,12,123-131。
12. 盧欽銘(民69)。國小及國中學生自我觀念特質之分析。測驗年刊,27,33-44。