跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/28 19:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹立偉
研究生(外文):Li-Wei Chan
論文名稱:混合空氣對流流經圓形加熱底板的水平矩型管道之迴流結構流場觀測
論文名稱(外文):Visualization of Return Flow Structure in a Mixed Convective Air Flow over a Heated Circular Plate Embedded in the Bottom of a Horizontal Flat Duct
指導教授:林清發林清發引用關係
指導教授(外文):T. F. Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:53
中文關鍵詞:水平
外文關鍵詞:horizontal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇文章是利用流場可視化以及溫度量測,對於混合空氣對流流經圓形加熱底板的水平矩型管道,由浮力造成的迴流結構加以探討。內容敘述了迴流在空間上及溫度場的結構。此外,上游的迴流跟下游渦流結構的關係也在文中提及。更重要的是,迴流結構形成的過程也仔細的在文中敘述。實驗的參數範圍是雷諾數 (Reynolds number) 從5到50,雷利數 (Rayleigh number) 從4000到16000,由這些參數可以分別討論雷諾數和雷利數對迴流結構的影響。實驗結果顯示在低浮力與慣性力比值下,只有縱向渦卷存在管道的出口後半部份,管道中並不存在迴流結構。在中等的浮力與慣性力比值下,微弱的迴流存在於管道入口,靠近上板的地方。當浮力與慣性力比值繼續昇高且Re < 10,上游迴流結構強度變強而且佔據了很大的區域。此外,在靠近管道出口也有一個迴流出現。在銅板上的主要主導流場結構是橫向渦卷。有趣的是,位於管道入口處的迴流結構是呈現半圓的形狀圍繞在銅板旁邊。經由流場可視化的觀察發現由浮力造成的一對旋轉方向相反橫向渦卷是從迴流區的下游尖端分裂而出。實驗中也注意到在流場轉變過程中,迴流先出現在靠近管道側板。另外根據實驗的資料,在文章中也列出了有關於迴流結構之發生條件,大小,中心點位置的修正公式。

An experiment combining flow visualization and temperature measurement is conducted here to investigate the buoyancy induced return flow in mixed convection of air over a heated circular plate embedded in the bottom of a horizontal heat duct. Both the spatial and temporal structures of the return flow are examined in detail. Besides, how the return flow induced in the upstream portion of the duct is related to the vortex flow in the downstream is delineated. Moreover, the formation processes leading to the return flow from the unidirectional forced main flow are explored. In the experiment the Reynolds number of the flow is varied from 5 to 50 and the Rayleigh number from 4, 000 to 16, 000 and the effects of the Reynolds and Rayleigh numbers on the return flow are examined in detail. The results show that at a low buoyancy-to-inertia ratio only steady longitudinal vortex rolls (L-rolls) are induced in the exit half of the duct and no return flow appears in the duct. At a intermediate buoyancy-to-inertia ratio a small flow recirculation exists around the duct inlet near the top wall and the L-rolls become unsteady. When the buoyancy-to-inertia ratio is high and the Reynolds number is small with Re<10, the upstream return flow is strong and occupies a large region. There is another return flow zone around the exit end of the duct. Over the heated circular plate the flow is dominated by the moving transverse rolls. It is of interest to note that the return flow around the duct inlet at steady or statistically stable state is in the form of a semicircular roll around the upstream edge of the circular plate. We further note that during the transient stage the return flow first appears in the side wall region of the duct. Flow visualization also reveals that the splitting of the downstream tip of the return flow zone in the upstream near the duct inlet and the buoyancy driven, spanwisely extended thermal under the tip generate a pair of counter-rotating transverse rolls in the entry portion of the duct. The rolls are then pushed by the main flow to move slowly downstream and grow slightly in size. In addition, the criterion for the onset of the return flow near the duct inlet, the size and the center position of the return flow, based on the present experimental data, are correlated empirically.

ABSTRACT Ⅰ
CONTENES Ⅲ
LIST OF TABLES Ⅳ
LIST OF FIGURES Ⅴ
NOMENCLATURE Ⅶ
CHAPTER 1 INTRODUCTION
CHAPTER 2 EXPERIMENTAL APPARTUS AND PROSEDURES
2.1 Experimental Apparatus
2.2 Analysis of Temperature Oscillation
2.3 Preliminary Investigations of Flow Field
2.4 Experimental Procedures
2.5 Uncertainty Analysis
CHAPER 3 RESULTS AND DISCUSSION
3.1 Formation of Return Flow
3.2 Return Flow at Steady or Statistically Stable State
3.3 Criterion and Some Quantitative Characteristics of Return Flow
3.4 Temporal Structures Of Return Flow
CHAPTER 4 CONCLUDING REMARKS
REFERENCES

1. K. C. Chiu and F. Rosenberger, Mixed Convection between Horizontal Plates-Ⅰ. Entrance Effect, Int. J. Heat and Fluid Flow No. 30, 1645-1654 (1987).
2. E. L. Koschmieder, Béonard cell and Taylor vortices, Cambridge University Press, Combirdge, 1993 (Chapter 5).
3. Y. Mori, Buoyancy Effects in Forced Laminar Convection Flow Over a Horizontal Flat Plate, J. Heat Transfer 83, 479-482 (1961).
4. E. M. Sparrow, W. J. Minkowycz, Buoyancy Effects on Horizontal Boundary-layer Flow and Heat Transfer, Int. J. Heat Mass Transfer 5, 505-511 (1962).
5. F. C. Eversteyn, P. J. W. Severin, C. H. J. v. d. Brekel and H. L. Peek, A Stagnant Layer Model for the Epitaxial Growth of Silicon form Silane in a Horizontal Reactor, J. Electrochem. Soc. 117, 925-931 (1970).
6. Y. Kamotani, S. Ostrach, and H. Miao, Convection Heat Transfer Augmentation in Thermal Entrance Regions by Means of Thermal Instability, J. Heat Transfer 101, 222-226 (1979).
7. L. J. Giling, Gas Flow Patterns in Horizontal Epitaxial Reactor Cells Observed by Interference Holography, J. Electrochem. Soc. 129, 634-644 (1982).
8. J. Ouazzani, K.-C. Chiu and F. Rosenberger, On the 2D Modeling of Horizontal CVD Reactors and its Limitatons, J. Gryst. Growth 91, 497-508 (1988).
9. J. Ouazzani, and F. Rosenberger, Three-Dimensional Modeling of Horizontal Chemical Vapor Deposition- Ⅰ. MOCVD at Atmospheric Pressure, J. Gryst. Growth 100, 545-576 (1990).
10. R. J. Field, Simulations of Two-Dimensional Recirculating Flow Effects in Horizontal MOVPE, J. Gryst. Growth 97, 739-760 (1989).
11. W. L. Holstein and J. L. Fitzjohn, Effect of Buoyancy Forces and Reactor Orientation on Fluid Flow and Growth Rate Uniformity in Cold-Wall Channel CVD Reactors, J. Gryst. Growth 94, 145-158 (1989).
12. E. P. Visser, C. R. Kleijn, C. A. M. Govers, C. J. Hoogendoorn, & L. J. Giling, Return Flows in Horizontal MOCVD Reactors Studied with the Use of TiO2 Particle Injection and Numerical Calculations, J. Gryst. Growth 94, 929-946 (1989).
13. D. I. Fotiadis, K. F. Jensen and W. Richter, Flow and Heat Transfer in CVD Reactors:Comparison of Raman Temperature Measurements and Finite Element Model Predictions, J. Gryst. Growth 100, 577-599 (1990).
14. E. O. Einset, K. F. Jensen and C. R. Kleijn, On the Origin of Return Flows in Horizontal Chemical Vapor Deposition Reactors, J. Gryst. Growth 132, 483-490 (1993).
15. K. C. Karki, P. S. Sathyamurthy, and S. V. Patankar, Three-Dimensional Mixed Convection in A Horizontal Chemical Vapor Deposition Reactor, J. Heat Transfer 115, 803-806 (1993).
16. N. K. Ingle and T. J. Mountziaris, The onset of Transverse Recirculations during Flow of Gases in Horizontal Ducts with Differentially Heated Lower Walls, J. Fluid Mech. Vol. 277, 249-269 (1994).
17. J. W. Zhang, H. K. Gao, J. K. Zhang and Y. Yand, Numerical Simulation of Return Flow in MOCVD Reactor, Chinese Journal Semicinfuctor V.15 n4, 268-272 (1994).
18. D. B. Ingham and P. Watson, Recirculating Laminar Mixed Convection in a Horizontal Parallel Plate Duct, Int. J. Heat and Fluid Flow No. 16, 202-210 (1995).
19. D. B. Ingham, P. J. Heggs and P. Watson, Upstream Migration of Heat during Combined Convection in A Horizontal Parallel Plate Duct, Int. J. Heat Mass Transfer Vol. 39 No. 2, pp. 437-440, (1996).
20. T. M. Makhviladze and A. V. Martjushecko, Several Aspects of the Return Flows Formation in Horizontal CVD Reactors, Int. J. Heat and Fluid Flow No. 16, 2529-2536 (1998).
21. X. Nicolas, J. -M. Luijkx, J. —K. Platten, Linear Stability of Mixed Convection Flows in Horizontal Rectangular Channels of Finite Transversal Extension Heated from Below, Int. J. Heat and Mass Transfer 43, 589-610 (2000).
22. K. W. Park, and H. Y. Pak, Characteristics of Three-Dimensional Flow, Heat, and Mass Transfer in A Chemical Vapor Deposition Reactor, Numerical Heat Transfer, Part A 37, 407-423 (2000).
23. C. H. Yu, M. Y. Chang, C. C. Huang and T. F. Lin, Unsteady vortex roll structures in a mixed convective air flow through a horizontal plane channel — a numerical study, Int. J. Heat Mass Transfer Vol. 40, No. 3, 505-518 (1997).
24. M. Y. Chang and T. F. Lin, Vortex flow pattern selection and temporal-spatial structures of transverse and mixed vortex rolls in mixed convection of air in a horizontal flat duct, Phys. Rev. E54, 5146-5160 (1996).
25. M. Y. Chang, C. H. Yu and T. F. Lin, Flow visualization and numerical simulation of transverse and mixed vortex roll formation in mixed convection of air in a horizontal flat duct, Int. J. Heat Mass Transfer Vol. 40, 1907-1922 (1996).
26. C. H. Yu, M. Y. Chang and T. F. Lin, Structure of moving transverse and mixed rolls in mixed convection of air in a horizontal plane channel, Int. J. Heat Mass Transfer Vol.40, No.2, 333-346 (1997).
27. J. T. Lir, M. Y. Chang and T. F. Lin, Vortex flow patterns near critical state for onset of convection in air flow through a bottom heated horizontal flat duct, Int. J. Heat Mass Transfer Vol. 44, 705-719 (2001).
28. T. C. Cheng, J. T. Lir and T. F. Lin, Stationary transverse rolls and U-rolls in limiting low Reynolds number mixed convective air flow near the convective threshold in a horizontal flat duct, Int. J. Heat Mass Transfer, in press (2001)
29. R. K. Shah and A. L. London, Laminar Flow Forced Convection in Ducts, pp. 196-198. Academic Press, New York(1987).
30. S. J. Kline and F. A. McClintock, Describing uncertainties in single-sample experiments, Mechanical Engineering 75, 3-12 (1953).
31. J. L. Tuh, Experimental Study on the Mixed Convective Vortex Air Flow Structure Driven by a Heated Circular Plate Embedded in the Bottom of a Horizontal Flat Duct, Ph. D. thesis, Dept. Mech. Engineering, National Chiao Tung University, Hsinchu, Taiwan, expected in 2003.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文