跳到主要內容

臺灣博碩士論文加值系統

(54.225.48.56) 您好!臺灣時間:2022/01/19 22:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王建評
研究生(外文):Jiang -Ping Wang
論文名稱:界面熱阻對非平板薄膜系統熱傳導效應之分析
論文名稱(外文):Effects of Interface Thermal Resistance on the Heat Transfer for a Non-Planar Thin Film System
指導教授:曲新生曲新生引用關係
指導教授(外文):Hsin-Sen Chu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:86
中文關鍵詞:界面熱阻非平板薄膜熱傳導微觀熱傳
外文關鍵詞:interface thermal resistancenon-planar thin filmheat conductionmicroscale heat transfer
相關次數:
  • 被引用被引用:2
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文主要在探討微觀尺寸下圓柱形及球形多層薄膜內(Multi-layer thin film)界面熱阻對熱傳導現象的影響。在極微小尺寸下,當薄膜尺寸小至與材料的平均自由路徑相同級數時,熱傳導的行為已非巨觀下連續的概念所能描述。本文中自行推導出圓柱座標及球座標下的聲子輻射熱傳模式,探討微小尺寸下薄膜熱物理性質的改變。在界面處以非彈性散異理論模式來分析界面熱阻的影響。由研究結果發現,薄膜尺寸愈小,造成邊界上的溫度落差愈大,聲子的穿透現象(Ballistic transport)愈明顯,薄膜的熱傳導係數也隨著薄膜尺寸的縮小而愈小。此時薄膜內的聲子處於高度不平衡狀態,降低了能量傳遞的能力,與實驗結果比較亦相當符合。曲率的改變對薄膜熱傳導係數亦有明顯的影響,曲率愈大造成薄膜內聲子的碰撞機率增加,使得熱傳導係數愈大,其中又以球形薄膜受曲率的影響最大。在界面處以非彈性散異理模式來分析界面熱阻的影響。由研究結果得知,以非彈性散異理論模式所得到的界面熱阻可視為一定值,曲率及尺寸的改變對熱阻大小所造成的影響並不明顯。
This study deals with the effects of interface thermal resistance on the heat transfer for a non- planar thin film system based on the microscopic heat transport theory. In the acoustic thin limit, where the film thickness is much less than the phonon mean free path, macroscopic heat transport theory can’t be applied. The equation of phonon radiative transfer is applied to analyze the effects of curvature and film thickness on the thermal conductivity of thin film system, including interfacial effects. The results showed a significant reduction of effective thermal conductivity when the film thickness is getting thinner. Phonon heat conduction is in high non-equilibrium state inside the film and boundary scattering effect is dominant here. The agreements between the present predictions of the thermal conductivity and the experimental data are achieved. Furthermore, curvature also has significant effect on the thermal conductivity. Larger curvature would enhance energy transport inside the thin film. Regarding for inelastic diffuse mismatch model, thermal resistances can be treated as a constant. Both size and curvature effects can’t be evident to see.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
符號說明 xi
一、緒論 1
1.1研究動機 1
1.2微觀熱傳導現象簡介 2
1.3文獻回顧 4
1.4 研究內容 6
二、聲子輻射熱傳方程式 13
2.1聲子輻射熱傳向量式 13
2.2圓柱座標聲子輻射熱傳方程式 16
2.3球座標聲子輻射熱傳方程式 19
三、界面熱阻 23
3.1界面層理論模式 23
3.2聲異理論模式 24
3.3散異理論模式 25
3.4散射聲異理論模式 27
四、雙層薄膜熱傳分析 28
4.1雙層圓柱形薄膜熱傳分析 28
4.1.1統御方程式及邊界條件 28
4.1.2 SN方法求解 30
4.2雙層球形薄膜熱傳分析 33
4.2.1統御方程式及邊界條件 34
4.2.2 SN方法求解 35
五、結果與討論 40
5.1雙層圓柱形薄膜之結果分析 40
5.2雙層球形薄膜之結果分析 46
六、結論與建議 80
參考文獻 82
1. Tien, C. L. and Chen, G., “Challenges in Microscale Radiative and Conductive Heat Transfer,” Fundamental Issues in Small Scale Heat Transfer, ASME HTD - Vol. 227, pp. 1-12, 1992.
2. Tien, C. L., Majumdar, A., Gerner. F. M., Microscale Energy Transport, Taylor & Francis, 1998
3. Tzou, D. Y., Macro- to Microscale Heat Transfer: the Lagging Behavior, Taylor & Francis, Washington, DC, 1996.
4. Rohsenow, W., Hartnett, J. P., and Cho, Y. I., Handbook of Heat Transfer, McGraw-Hill, New York, 1998.
5. Maxwell, J. C., “On the Dynamic Theory of Gases,” Philosophical Transaction, London, Vol. 157, pp. 49-88, 1867.
6. Kaganov, M. I., Lifshitz, I. M. and Tanatarov, M. V., “Relaxation Between Electrons and Crystalline Lattices,” Soviet Physics JETP, Vol. 4, pp. 173-178, 1957.
7. Qiu, T. Q. and Tien, C. L., “Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals,” ASME Journal of Heat Transfer, Vol. 115, pp. 835-841, 1993.
8. Guyer, R. A. and Krumhansl, J. A., “Solution of the Linearized Boltzmann Equation,” Physical Review, Vol. 148, pp. 766-778, 1996.
9. Klitsner, J. E., VanCleve, J. E., Fischer, H. E. and Pohl, R. Q., “Phonon Radiative Heat Transfer and Surface Scattering,” Physical Review B, Vol. 38, pp. 7576-7594, 1988.
10. Majumdar, A., “Microscale Heat Conduction in Dielectric Thin Film,” ASME Journal of Heat Transfer, Vol. 115, pp. 7-16, 1993.
11. Joshi, A. A. and Majumdar, A., “Transient Ballistic and Diffusive Phonon Heat Transport in Thin Film,” Journal of Applied Physics, Vol. 74, pp. 31-39, 1993.
12. Tien, C. L., Armaly, B. F. and Jagannathan, P. S., “Thermal Conductivity of Thin Metallic Films, Proceedings of Conference on Thermal Conductivity,” pp. 7-10, 1968.
13. Tien, C. L. and Chen, G., “Challenges in Microscale Conductive and Radiative Heat Transfer,” ASME Journal of Heat Transfer, Vol. 116, pp. 799-807, 1994.
14. Little, W. A., “The Transport of Heat Between Dissimilar Solids at Low Temperature,” Can, J. Phys., Vol.37, pp. 334-349, 1959.
15. Swartz, E. T., “Solid-Solid Thermal Boundary Resistance,” Ph. D. thesis, Cornell University, 1987.
16. Swartz, E. T. and Pohl, R. O., “Thermal Boundary resistance, Reviews of Modern Physics,” Vol. 61, No3, pp. 605-668, 1989.
17. Marshall, C. D., Fishman, I, M., Dorfman, R. C., Emo, C. B. and Fayer, M. D., “Thermal Diffusion, Interfacial Thermal Barrier, and Ultrasonic Propagation in Thin Film:Surface-Selective Transient-Grating Experiment,” Physical Review B, Vol. 45, No. 17, pp. 10009-10021, 1992.
18. Chen, R. C., Wu, J. P. and Chu, H. S., “Bolometric Response of High-Tc Superconducting Detectors to Optical Pluses and Continuous Waves,” ASME Journal of Heat Transfer, Vol. 117, pp. 528-534, 1995.
19. Kelkar, M. and Phelan, P. E., “Thermal Boundary Resistance for Thin Film High- Superconductors at Varying Interfacial Temperature Drops,” Int. J. Heat and Mass Transfer, Vol. 40, No11, pp. 2637-2645, 1997.
20. Phelan, P. E., “Application of Diffuse Mismatch Theory to the Prediction of Thermal Boundary Resistance in Thin-Film High- Superconductors,” ASME Journal of Heat Transfer, Vol. 120, pp. 37-43, 1998.
21. Prasher, R. S. and Phelan, P. E., “A Scattering-Mediated Acoustic Mismatch Model for the Prediction of Thermal Boundary Resistance,” ASME Journal of Heat Transfer, Vol. 123, pp. 105-112, 2001.
22. Chen, G. and Tien, C. L., “Thermal Conductivities of Quantum Well Structures,” Journal of Thermophysics and Heat Transfer, Vol. 7, No2, pp. 311-318, 1993.
23. Chen, G. and Neagu, M., “Thermal Conductivity and Heat Transfer in Superlattices”, Appl. Phys. Lett. Vol. 71, No. 19, pp. 2761-2763, 1997.
24. Chen, G., “Size and Interface Effect on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures”, Journal of Heat Transfer, Vol. 119, pp. 220-229, 1997.
25. Chen, G., “Thermal Conductivity and Ballistic-Phonon Transport in the cross-plane direction of superlattice”, Physical Review B, Vol. 57, pp. 14958-14973, 1998.
26. Zeng, T. and Chen, G., “Phonon Heat Conduction in Thin Film: Impact of thermal boundary resistance and internal heat generation”, ASME Journal of heat transfer, Vol. 123, pp. 340-347, 2001.
27. Kittel, C., Introduction to Solid State Physics, Wiley, New York, 1986.
28. Ziman, J. M., Electrons and Phonons, Oxford University Press, London, 1960.
29. Vincenti, W. G. and Kruger, C. H., Introduction to Physical Gas Dynamics, Krieger, 1977.
30. Klemens, P. G., “Thermal Conductivity and Lattice Vibrational Modes,” in Solid State Physics, edited by F. Seitz And D. Turnbull, Academic New York, Vol. 7,pp. 1-98, 1958.
31. Modest, M. F., Radiative Heat Transfer, McGraw-Hill, Inc, 1993.
32. Siegel, R. and Howell, J., Thermal Radiation Heat Transfer, Hemisphere, Washington, 1992.
33. Mills, A. F., Basic Heat and Mass Transfer, RICHARD D. IRWIN, INC, 1995.
34. INSPEC (information service)., Properties of Silicon, INSPEC, 1988.
35. Antonio, P. M., Handbook of Industrial diamonds and diamond films, Marcel Dekker, 1998.
36. Sadao, A., GaAs and Related Materials : bulk semiconducting and superlattice properties, World Scientific, 1994.
37. Michels, D., Hadeler, J., Lienhard V, J. H., “High Heat Flux Resistance Heater from VPS and HVOF Thermal Spraying,” Experiment Heat Transfer, Vol. 11, pp. 341-358, 1998.
38. Yao, T., “Thermal Properties of GaAs/AlAs Superlattice,” Applied Physics Letters, Vol. 51, pp.1798-1800, 1987.
39. Yu, X. Y., Chen, G., Verma. A. and Smith, J. S., “Temperature Dependence of Thermophysical Properties of GaAs/AlAs Periodic Thin Film Structure,” Applied Physics Letters, Vol. 67, pp. 3553-3556, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 洪儷瑜、涂春仁(民85)。Coie & Dodge社會計量地位分類公式之修正。測驗年刊,43,103-114。
2. 吳芳萍(民85)。認知行為取向團體輔導對國小高攻擊性兒童輔導效果之研究。國立屏東師範學院國民教育研究所碩士論文,未出版。
3. 何麗儀(民86)。完形治療與教師情緒管理。諮商與輔導,143,23~27。
4. 王柏壽(民78)。國小學童受同儕接納的相關因素之研究。嘉義師院學報,2,99-152。
5. 翁毓秀(民85)。完形理論的自覺與接觸。諮商與輔導,127,10~17。
6. 張寶珠(民86)。我在完形過程裡。諮商與輔導,143,31~39。
7. 陳滿樺(民81)。對完形治療中的「完形」及「輔導關係」的詮釋驗證。輔導月刊,28,3、4,12~14。
8. 陳錫銘(民81)。從完形治療法談此時此刻的察覺。輔導月刊,28,3、4,1~7。
9. 陳靜宜(民86)。國小五年級學生性別、自我概念與人際關係相關之研究。傳習,十五,1~20。
10. 劉焜輝(民76)。波爾斯與完形療法(一)。諮商與輔導,20,20~23。
11. 劉焜輝(民76)。波爾斯與完形療法(二)。諮商與輔導,21,14~17。
12. 蔡敏玲(民85)。教育質性研究者請在文本中現身:兩項重要思慮。國民教育,37,二。
13. 簡茂發(民72)。國小學童友伴關係的相關因素之研究。教育心理學報,16,71-78。
14. 嚴霽虹(民75)。完形治療學派理論在學校輔導上應用之我見。諮商與輔導 10,5~10。
15. 蘇完女(民86)。空椅技術在諮商中的運用。諮商與輔導,138,26~29。