跳到主要內容

臺灣博碩士論文加值系統

(3.90.139.113) 您好!臺灣時間:2022/01/16 18:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖倍億
研究生(外文):Pei-Yi Liao
論文名稱:燈源加熱之垂直快速加熱爐內流場觀測研究:進氣多孔板之效應
論文名稱(外文):Mixed Convective Recirculating Gas Flow Patterns in a Model Lamp Heated Vertical Rapid Thermal Processor: Effects of Showerhead
指導教授:林 清 發
指導教授(外文):Tsing-Fa Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:89
中文關鍵詞:進氣多孔板
外文關鍵詞:Showerhead
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文利用實驗流場觀測方法研究在燈源加熱之垂直快速加熱爐內進氣多孔板對於八吋晶片上方流場之效應。在這次的研究中,我們用厚銅板來取代晶片以便獲得較佳的溫度均勻性,同時,我們也利用乾空氣來替代反應氣體。在這次的研究裡,我們使用了三種不同的進氣多孔板來做比較。首先,我們在一薄石英圓盤上穿了921個大小均一的孔洞,並將之稱為單一進氣多孔板。接下來,第二種多孔板由兩個穿孔的石英圓盤所組成,我們並將之稱為雙進氣多孔板。在上方的多孔板的孔徑由小而大組成,並與下方均一孔徑的多孔板有十公分的間距。最後,第三種多孔板是由一個均一孔徑的多孔板與一個環形塊狀物所組成,我們並將之命名為修正型進氣多孔板。在本實驗中的物理參數包括銅板和入口空氣的溫差與入口空氣的流量。此外,關於在混合爐體內的進氣角度亦做了相關的試驗。
從測試段所拍攝的側視圖顯示三個典型的流場結構。在低浮慣比(buoyancy-to-inertia ratio)時,整個反應爐體被衝擊塞柱流(plug flow)所佔據,此時流體直接衝擊到銅板,因此銅板上方並沒有其他渦流的產生。反之,高浮慣比時,整個反應爐體被一對巨大的浮力驅動流(buoyancy-induced flow)所支配。而當浮慣比處於兩者中間時,一個由衝擊塞柱流和浮力驅動流所組成的混合渦流 將會產生。此外,改變進氣角度對於爐體內流場結構只有輕微的影響。比較上述的三種進氣多孔板,我們發現相對於使用單一進氣多孔板而言,雙進氣多孔板在部分的情況下可以輕微的減少浮力驅動流的強度和尺寸大小。此外,使用修正型進氣多孔板可以明顯的壓制浮力驅動流的產生。在中浮慣比時,浮力驅動流被抑制而產生所謂的衝擊塞柱流。這種有效的流場穩定現象導因於我們置入的環形塊狀物,可以增加進氣氣流的速度以及減少爐體外圍區域的局部雷利數(Rayleigh number

The effects of the showerhead on the recirculating air flow in a model lamp heated vertical rapid thermal processor for an eight-inch wafer is extensively investigated by experimental flow visualization. A thick copper disk is used to simulate the wafer for its better uniformity of surface temperature and air is used to replace the reactant gases in the present study. Three different showerheads are tested in the present study. The first showerhead is a thin circular uniformly perforated quartz plate, designated as the single showerhead. The second showerhead consists of two perforated plates and is designated as the double showerhead. The top plate has nonuniform perforations, while the bottom one has uniform perforations with a separating distance of 10 cm between them. The third showerhead is made up of a uniformly perforated plate and an annular block placed right below the outer edge of the plate, which is named as the modified showerhead. The physical parameters in the experiment include the temperature difference between the copper plate and inlet air and the inlet air flow rate. In addition, the angle of the air injected into the mixing chamber is also tested.
The side view flow photos taken from the processor reveal three typical flow patterns. Specifically, at lower buoyancy-to-inertia ratios, the plug flow dominates in the processing chamber and no vortex roll appears above the copper plate. While at high buoyancy-to-inertia ratios the chamber is occupied by a big buoyancy-induced circular vortex roll. A mixed vortex flow consisting of both a plug flow and a buoyancy-induced vortex roll prevails at intermediate buoyancy-to-inertia ratios. Besides, the change of the gas injection angle is found to only slightly affect the recirculating flow in the chamber. Compared with the processor installed with single showerhead, the use of the double showerhead can slightly reduce the strength and size of the buoyancy-induced flow for some cases. Moreover, using the modified showerhead can significantly suppress the buoyancy induced flow. At intermediate buoyancy-to-inertia ratios the buoyancy induced vortex roll can be completely eliminated, resulting in a plug flow. This effective flow stabilization is due to the acceleration of the gas flow as well as the reduction of the local Rayleigh number in the outer zone of the processing chamber by the installation of the annular bloc

ABSTRACT i
TABLE OF CONTENTS iii
LIST OF TABLES vi
LIST OF FIGURES vii
NOMENCLATURE xiv
CHAOTER 1 1
INTRODUCTION 1
1.1 Motivation of the Present Study 1
1.2 Literature Review 2
1.3 Objectives and Scope of Present Study 6
CHAPTER 2 11
EXPERIMENTAL APPARATUS AND PROCEDURES 11
2.1 EXPERIMENTAL APPARATUS 11
2.2 Experimental Procedures 14
CHAPTER 3 26
UNCERTAINTY ANALYSIS 26
CHAPTER 4 29
GAS FLOW PATTERNS IN THE PROCESSING CHAMBER 29
4.1 Typical Flow Patterns 29
4.1.1 Plug flow 30
4.1.2 Buoyancy-induced flow 30
4.1.3 Mixed plug and buoyancy-induced flow 30
4.2 Recirculating Flow in the Processor Installed with the Single Showerhead at q = 90° 31
4.2.1 Effects of gas flow rate 31
4.2.2 Effects of copper disk-inlet air temperature difference 32
4.3 Recirculating Flow in the Processor Installed with the Single Showerhead at q = 60° 32
4.3.1 Effects of gas flow rate 33
4.3.2 Effects of copper disk-inlet air temperature difference 33
4.4 Recirculating Flow in the Processor Installed with the Double Showerhead at q = 90° 33
4.4.1 Effects of gas flow rate 33
4.4.2 Effects of copper disk-inlet air temperature difference 34
4.5 Recirculating Flow in the Processor Installed with the Modified Showerhead at q = 90° 34
4.5.1 Effects of gas flow rate 35
4.5.2 Effects of copper disk-inlet air temperature difference 35
4.6 Some Preliminary Comparison 35
CHAPTER 5 84
CONCLUDING REMARKS 84
REFERENCES 86

1. R. Gardon, J.C. Akfirat, The Role of Turbulence in Determining The Heat-transfer Characteristics of Impinging Jets, Int. J. Heat Mass Transfer 8 (1965) 1261-1272
2. R. Gradon, J.C. Akfirat, Heat Transfer Characteristics of Impinging Two-dimensional Air Jets, ASME Transac. C, J. Heat Transfer (1966) 101-108
3. M.T. Scholtz, O. Trass, Mass Transfer in a Nonuniform Impinging Jet, AIChE J. 16 (1970) 82-96
4. E.M. Sparrow, T.C. Wong, Impingement Transfer Coefficients Due to Initially Laminar Slot Jets, Int. J. Heat Mass Transfer 18 (1975) 597-605
5. J.H. Masliyah, T.T. Nguyen, Mass Transfer Due to An Impinging Slot Jet, Int. J. Heat Mass Transfer 22 (1979) 237-244
6. P. Hrycak, Heat Transfer From Round Impinging Jets toaFlat Plate, Int. J. Heat Mass Transfer 26 (1983) 1857-1865
7. A.K. Mohanty and A.A. Tawfek, Heat Transfer Due toaRound Jet Impinging Normal to a Flat Surface, Int. J. Heat Mass Transfer 36 (1993) 1639-1647
8. D. Lytle and B.W. Webb, Air Jet Impingement Heat Transfer at Low Nozzle-plate Spacings, Int. J. Heat Mass Transfer 37 (1994) 1687-1697
9. L. Huang and M. S. El-Genk, Heat Transfer of An Impinging Jet on a Flat Surface, Int. J. Heat Mass Transfer 37 (1994) 1915-1923
10. İ.B. Özdermir, J.H. Whitelaw, Impingement of An Axisymmetric Jet on Unheated and Heated Flat Plates, J. Fluid Mech. 240 (1992) 503-532
11. T. Liu, J.P. Sullivan, Heat Transfer and Flow Structures in An Excited Circular Impinging Jet, Int. J. Heat Mass Transfer 39 (1996) 3695-3706
12. R. Viskanta, Heat Transfer to Impinging Isothermal Gas and Flame Jets, Exp. Thermal Fluid Sci. 6 (1993) 111-134
13. K. Jambunathan, E. Lai, M.A. Moss, B.L. Button, A Review of Heat Transfer Data for Single Circular Jet Impingement, Int. J. Heat Fluid Flow 13 (1992) 106-115
14. C. Carcasci, An Experimental Investigation on Air Impinging Jets Using Visualisation Methods, Int. J. Therm. Sci. 38 (1999) 808-818
15. S.V. Garimella and B. Nenaydykh, Nozzle-geometry Effects in Liquid Jet Impingement Heat Transfer, Int. J. Heat Mass Transfer 39 (1996) 2915-2923
16. L.A. Brignoni and S.V. Garimella, Effects of Nozzles-inlet Chamfering on Pressure Drop and Heat Transfer in Confined Air Jet Impingement, Int. J. Heat Mass Transfer 43 (2000) 1133-1139
17. J. Lee and S.J. Lee, The Effect of Nozzle Aspect Ratio on Stagnation Region Heat Transfer Characteristics of Elliptic Impinging Jet, Int. J. Heat Mass Transfer 43 (2000) 555-575
18. A.H. Beitelmal, M.A. Saad and C.D. Patel, Effects of Surface Roughness on The Average Heat Transfer of An Impinging Air Jet, Int. Comm. Heat Mass Transfer 27 (2000) 1-12
19. G. Wahl, Hydrodynamic Description of CVD Processes, Thin Solid Films 40, 13-26 (1977)
20. C.R. Biber, C.A. Wang, S. Motakef, Flow Regime Map and Deposition Rate in Vertical Rotating-Disk OMVPE Reactor, Journal of Crystal Growth 123 (1992) 545-554
21. G. Evans, R. Greif, A Numerical Model of TheFlow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor, Transitions of ASME, J. Heat Transfer 109 (1987) 928-935
22. G. Evans, R. Greif, Effects of Boundary Conditions on The Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor, Numerical Heat Transfer 12 (1987) 243-252
23. G. Evans and R. Greif, Forced Flow Near a Heated Rotating Disk: A Similarity Solution, Numerical Heat Transfer 14 (1988) 373-387
24. D.I. Fotiads, S. Kieda, Transport Phenomena in Vertical Reactors for Metalorganic Vapor Phase Epitaxy, Journal of Crystal Growth 102 (1990) 441-470.
25. C.R. Kleijn, Th.H. van der Meer, C.J. Hoogendoorn, A Mathematical Model for LPCVD in a Single Wafer Reactor, J. Electrochem. Soc. 136 (11) (1989) 3423-3433.
26. C.R. Biber, C.A. Wang, S. Motakef, Flow Regime Map and Deposition Rate in Vertical Rotating-Disk OMVPE Reactor, Journal of Crystal Growth 123 (1992) 545-554.
27. H. Caquineau, B. Despax, Influence of The Reactor Design in The Case of Silicon Nitride PECVD, Chemical Engineering Science 52 (17) (1997) 2901-2914.
28. A.H. Dilawari, J. Szekely, A Mathemical Representation of a Modified Stagnation Flow Reactor for MOCVD Application, Journal of Crystal Growth 108 (1991) 491-498.
29. S. Joh and G.H. Evans, Heat Transfer and Flow Stability in a Rotating disk/stagnation Flow Chemical Vapor Deposition Reactor, Numerical Heat Transfer Part A 31 (1997) 867-879.
30. C.Y. Soong, C.H. Chyuan and R.Y. Tzong, Thermo-flow Structure and Epitaxial Uniformity in Large-scale Metalorganic Chemical Vapor Deposition Reactors with Rotating Susceptor and Inlet Flow Control, Jpn. J. Appl. Phys. 37 (1998) 5823-5834.
31. T.G. Mihopoulos, S.G. Hummel and K.F. Jensen, Simulation of Flow and Growth Phenomena in a Close-spaced Reactor, J. of Crystal Growth 195 (1998) 725-732.
32. W.K. Cho, D.H. Choi, M.-U. Kim, Optimization of The Inlet Velocity Profile for Uniform Epitaxial Growth in a Vertical Metalorganic Chemical Vapor Deposition Reactor, Int. J. of Heat and Mass Transfer 42 (1999) 4143-4152.
33. P.N. Gadgil, Optimization of a Stagnation Point Flow Reactor Design for Metalorganic Chemical Vapor Deposition by Flow Visualization, Journal of Crystal Growth 134 (1993) 302-312.
34. X. Zhang, I. Moerman, C. Sys, P. Demeester, J.A. Crawley and E.J. Thrush, Highly Uniform AlGaAs/GaAs and InGaAs(P)/InP Structures Grown in a Multiwafer Vertical Rotating Susceptor MOVPE Reactor, Journal of Crystal Growth 170 (1997) 83-87.
35. I. Kim, D.G. Chang and P.D. Dapkus, Growth of InGaAsP in a Stagnation Flow Vertical Reactor Using TBP and TBA, Journal of Crystal Growth 195 (1998) 138-143.
36. C.P. Yin, C.C. Hsiao, T.F. Lin, Improvement in Wafer Temperature Uniformity and Flow Pattern in a Lamp Heated Rapid Thermal Processor, Journal of Crystal Growth 217 (2000) 201-210
37. S.J. Kline, F.A. Mcclintock, Describing Uncertainties in Single-Sample Experiment, Mechanical Engineering 75 (1953) 3-8.
38. R.J. Moffat, Contributions to TheTheory of Single-sample Uncertainty Analysis, J. Fluid Eng. 104 (1982) 250-260.
39. Thermophysical Properties of Fluid, JSME Data Book (1983).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 楊瓊珠(1991)‧北中南三區護士工作滿意程度及其影響因素之研究‧公共衛生,17(4),334-349。
2. 楊克平(2000)‧病患結果評量之概念與相關議題‧護理雜誌,47(2),20-25。
3. 楊克平(2000)‧以病患結果為主導的療護品質評價‧領導護理,3(1),19-24。
4. 王餘厚(1997)‧概論激勵士氣‧人事月刊,24(3)‧48-57。
5. 李水源、吳純純、張世彗(1999)‧特殊教育教師工作士氣之調查研究‧臺北市立師範學院學報‧30,431-450。
6. 周瑞玲、林明珍(1996)‧某地區教學醫院住院病患對醫院服務品質滿意度之調查分析‧醫院,29(3),5-13。
7. 江志正(1996)‧國民小學學校組織管理狀況對教師工作士氣之區別功能研究--以中部地區教師為例‧臺中師院學報,10,87-126。
8. 王誼邦(2000)‧提昇體育教師工作士氣之策略‧淡江體育特刊, 89,11‧121-127。
9. 王桂芸(2000)‧病患結果在臨床護理上之分類與應用‧護理雜誌,47(2),27-31。
10. 文久美、謝明娟、楊美雪(1999)‧由病患滿意度探討臺南地區門診醫師服務品質‧醫療品質,1(2),31-42。
11. 魏慧美(1993)‧大學生班級團體凝聚力及其有關因素的調查研究‧教育學刊,10,323-359。
12. 楊克平(1998)‧反思護理診斷─論護理敏感之病患結果分類‧護理雜誌,45(2),40-46。
13. 謝明娟、文久美、楊美雪(1998)‧門診病患對醫院滿意度與重視度之調查以臺灣地區區域醫院為例嘉南學報‧24,183-193。
14. 楊克平(1997).台灣某醫學中心護理過程品質之評價.榮總護理, 14(1), 62-73。
15. 黃素丹(1997)‧門診病患滿意度調查與服務品質相關因素探討‧醫院,30(2),10-22。