跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/19 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳介程
研究生(外文):Chieh-Cheng Chen
論文名稱:多時間尺度渾沌系統之相位及完全同步
論文名稱(外文):Phase and Full Synchronization of Chaotic Multiple Time Scales System
指導教授:戈正銘戈正銘引用關係
指導教授(外文):Zheng-Ming Ge
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:51
中文關鍵詞:多時間尺度渾沌相位同步神經
外文關鍵詞:Multiple time scalesChaosPhaseSynchronizationNeuron
相關次數:
  • 被引用被引用:0
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文首先探討將一無刷直流馬達系統利用仿射轉換(affine transform)與奇異微擾法(singular perturbation method)求得單一與多重時間尺度的數學模型。其次藉由數值分析方法的結果,例如相平面圖、時間響應、功率譜法,分歧圖及李亞普諾夫指數以觀察其週期解及渾沌行為。再藉由互耦合的方式來探討各個不同時間尺度下子系統之間的渾沌同步行為。此外在恆等(identical)系統與非恆等(non-identical)系統的相位與完全渾沌同步現象的研究中、試圖尋求渾沌同步與李亞普諾夫指數之間的關聯性。本文發現未耦合系統的渾沌路徑將影響系統的相位同步機制。並進一步探討李亞普諾夫指數運用於判斷相位同步發生的因素與條件。最後以具單一時間尺度之帶離心調速器的旋轉機械及多重時間尺度之 Hindmarsh-Rose (HR) 神經系統來研究不同系統參數下相位同步與李亞普諾夫指數的相互關係。

That the single and multiple time scales systems of the brushless dc motor can be derived from affine transform and singular perturbation method are primarily studied in this thesis. By applying various numerical results, such as phase portraits, time history, power spectrum analysis and bifurcation diagram, the behaviors of the periodic and chaotic motion are presented. By mutual coupling of one, two and three time scale systems, the behavior of chaotic synchronization between subsystems is studied. Besides, in the phase and full synchronous phenomena for coupled chaotic identical and non-identical systems, the relationship between chaotic synchronization and Lyapunov exponents is attempted to find. And the chaos route of original uncoupled system will influence the phase synchronization mechanism after system coupled. The possible factors and conditions, furthermore, for the Lyapunov exponent used as a criterion of occurrence of phase synchronization are studied. Finally the single time scale system such as rotational machine with centrifugal governor and the multiple time scales system such as Hindmarsh-Rose (HR) neurons are offered, their relations between phase synchronization and Lyapunov exponent are studied by using various system parameters.

ABSTRACT i
CONTENTS ii
LIST OF FIGURES iv
Chapter 1 Introduction 1
Chapter 2 Regular and Chaotic Dynamics of
Brushless DC Motor 3
2.1Description of the System Model and
Differential Equation of Motion 3
2.2Single Time Scale Representation of the
Equations of Motion 4
2.3Two Time Scales Representation of the
Equation of Motion 6
2.4Three Time Scales Representation of the
Equations of Motion 7
2.5Slow and Fast Mechanism of a Brushless
DC Motor 7
Chapter 3 Chaos Synchronization for Coupled
Identical Systems 10
3.1Synchronization of Single Time Scale System 10
3.2Synchronization of Two Time Scales System 12
3.3Synchronization of Three Time Scales System 12
Chapter 4 Chaos Synchronization for Coupled
Non-identical Systems 14
4.1Synchronization of Single Time Scale System 14
4.2Synchronization of Two Time Scales System 15
4.3Synchronization of Three Time Scales System 16
Chapter 5 Phase Synchronization for Other Chaotic Systems 17
5.1Phase Synchronization of HR Neurons System 17
5.2Phase Synchronization of Rotational Machine
with Centrifugal Governor Systems 18
Chapter 6 Conclusions 20
References 50

1.J. Sarnthein, H. Petsche, and P. Rappelsberger, “Synchronization between Prefrontal and Posterior Association Cortex during Human Working Memory”, Proc. Natl. Acad. Sci. USA, Vol. 95, 1998, pp. 7092-7096.
2.R. E. Mirollo, and S. H. Strogatz, “Synchronization of Pulse-couple Biological Oscillators”, Siam J. Appl. Math, Vol. 50, No. 6, 1990, pp. 1645-1662.
3.T. J. Walker, “Acoustic Synchrony: Two Mechanisms in the Snowy Tree Cricket”, Science, Vol. 166, 1969, pp. 891-894.
4.A. T. Winfree, “Biological Rhythms and the Behavior of Populations of Coupled Oscillators”, J. Theoret. Biol., Vol. 16, 1967, pp. 15-42.
5.H. Nemati, “Dynamic Analysis of Brushless Motors Based on Compact Representations of the Equations of Motion”, IEEE, Indus. Appl. Soci. Annual Meeting, Vol. 1, 1993, pp. 51-58.
6.H. Nemati, “Strange Attractors in Brushless DC Motors”, IEEE, Trans. Cric. And Syst., Vol. 41, No. 1, 1994.
7.M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “Phase Synchronization of Chaotic Oscillators”, Phys. Rev. Lett., Vol. 76, No. 11, 1996, pp. 1084-1087.
8.M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “From Phase to Lag Synchronization in Coupled Chaotic Oscillators”, Phys. Rev. Lett., Vol. 78, No. 22, 1997, pp. 4193-4196.
9.Khailil, H. K, Nonlinear Systems, Prentice Hall, New Jersey, 1996.
10.G. Chen, X. Dong, From Chaos to Order, World Scientific, New Jersey, 1998.
11.J.-W. Shuai, and D.M. Durand, “Phase Synchronization in Two Coupled Chaotic Neurons”, Phys. Lett. A, Vol. 264, 1983, pp. 289-297.
12.A. S. Pikovsky, M. G. Rosenblum, G. V. Osipov, and J. Kurths, “Phase Synchronization of Chaotic Oscillators by External Driving”, Physica D, Vol. 104, No. 22, 1997, pp. 219-238.
13.U. Parlitz, L. Junge, “Nonidentical Synchronization of Identical Systems”, J. Bifurcation and Chaos, Vol. 9, No. 12, 1999.
14.Z.-M. Ge, H.-S. Yang, H.-H. Chen, and H.-K. Chen, “Regular and Chaotic Dynamics of a Rotational Machine with a Centrifugal Governor”, International J. Engineering Science, Vol. 37, 1996, pp. 921-943.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top