跳到主要內容

臺灣博碩士論文加值系統

(54.91.62.236) 您好!臺灣時間:2022/01/17 23:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁繼民
論文名稱:離心調速器之渾沌同步與反控制
論文名稱(外文):Chaos Synchronization and Chaos Anticontrol of a Centrifugal Governor
指導教授:戈正銘戈正銘引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:55
中文關鍵詞:渾沌同步
外文關鍵詞:chaossynchronization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文研究離心調速器非線性系統的渾沌同步與反控制 . 藉由產生一個相同於原系統的方程式 , 利用不同的耦合項去使兩相同系統但初始值不同的渾沌系統同步 , 最後以李亞普諾夫指數以及系統同步時間去驗證臨界強度值 . 接著引進歐幾里得幾何距離去做單向暫態時間的系統同步 , 並作出一耦合強度與距離的關係圖 . 最後以原渾沌系統為載波並加上正弦訊號去模擬秘密通訊 , 模擬結果證實加密訊號能完整解碼達成秘密通訊的要求 .
第二部分是以外加控制項去使原本有週期解改變為渾沌行為以達成反控制的要求 . 並以外加頻率, 耦合強度與所產生的分叉圖的渾沌區域的範圍的長度作一三維的關係圖 , 進一步去了解三者之間的關係

Chaos synchronization and anticontrol of a centrifugal governor are studied in this thesis. By generating two identical systems, different coupling terms are used to synchronize the chaotic systems with different initial conditions. And Lyapunov exponent and synchronous time are used to confirm the critical coupling strength. Then Euclidean distance is used to make unidirectional synchronization and plot a figure with coupling strength vs the distance. Finally the secret communication is simulated. Chaotic systems are used to a sinusoidal carry signals. The results shows that encoded signals can completely decode and satisfy the demand for secret communication.

Contents
Contents i
List of Figures ii
1. Introduction 1
2. Choas Synchronization for Nonautonomous Systems 3
2.1 Description of the System Model and Equation of Motion 3
2.2 Unidirectional Chaos Synchronization 5
2.3 Mutual Coupling of Chaos Synchronization 7
2.4 Transient Time in Unidirectional Synchronization 9
3. Chaotic Secure Communization Systems 11
4. Anticontrol of Chaos 14
5. Conclusions 17
References
List of Figures
Fig 2.1 system diagram. 19
Fig 2.2 Phase portrait and errors of the two coupled systems with 1.65( ). 20
Fig 2.3 Phase portraits of two coupled systems. 21
Fig 2.4 The Lyapunov exponent for A between 0 to 2.5. 22
Fig 2.5 Synchronization time for different A. 23
Fig 2.6 Phase portraits and errors of the two coupled systems with 1.7 . 24
Fig 2.7 The Lyapunov exponent for A between 0 to 2.5. 25
Fig 2.8 Synchronization time for different A. 26
Fig 2.9 Phase portraits and errors of the two coupled systems with 1.8(exp( )-1). 27
Fig 2.10 Phase portraits and errors of the two coupled systems with 1.85(exp( )-1). 28
Fig 2.11 The Lyapunov exponent for A between 0 to 2. 29
Fig 2.12 Synchronization time for different A. 30
Fig 2.13 Phase portraits and errors of the two mutual coupled systems with A=0.78. 31
Fig 2.14 The Lyapunov exponent of mutual coupled for A between 0 to 2. 32
Fig 2.15 Synchronization time for different A. 33
Fig 2.16 Phase portraits and errors of the two mutual coupled systems with A=0.75. 34
Fig 2.17 Phase portraits and errors of the two mutual coupled systems with A=0.8. 35
Fig 2.18 The Lyapunov exponent of mutual coupled for A between 0 to 2. 36
Fig 2.19 Synchronization time for different A. 37
Fig 2.20 Phase portraits and errors of the two mutual coupled systems with A=1.28. 38
Fig 2.21 The Lyapunov exponent of mutual coupled for A=0.52 between 0 to 2. 39
Fig 2.22 Synchronization time for different A=1.26. 40
Fig 2.23 coupling strength K vs Euclidean distance. 41
Fig 2.24 time vs distance in semilog scale with K=1.85. 42
Fig 2.25 time vs distance in semilog scale with K=2.5. 43
Fig 2.26 time vs distance with various initial x(0), K=1.8. 44
Fig 3.1. The information signal , encrypted signal , decrypted signal ,and decrypted error . 45
Fig 3.2. (a)(b) is phase portrait and (c)(e) is error vs t, (d)(f) is x vs y 46
Fig3.3. Sensitivity of the secure communization system for . 47
Fig 3.4. (a) (b) Phase portrait, (c) (e) time-response error and (d) (f) - diagram by observed-based synchronization scheme. 48
Fig 4.1. Bifurcation diagram 49
Fig 4.2. A three-dimensional diagram for W, and the distance of chaos 50
Fig 4.3. Impulse torque with ta=10, . 51
Fig 4.4. f is controlled from 10 to 23 and phase portrait. 52
Fig 4.5. f is controlled from 10 to 22.8 and phase portrait. 53
Fig 4.6. Adding periodic torque with f=23, A=10, w=8. 54
Fig 4.7. Lyapunov exponent with periodic torque 55

1. Moon, F. C., Chaotic Vibrations: An Introduction for Applied for Scientists and Engineers, Wiley, Now York, 1987.
2. Thompson, J. M. T., and Stewart H. B., Nonlinear Dynamics and Chaos, Wiley, Chichester, 1986.
3. Khailil, H. K, Nonlinear Systems, Prentice Hall, New Jersey, 1996.
4. G ray C.M., Konig P., Engel A.K., W. Singer, Nature 338 (1989) 334.
5. Ashwin, P., Buescu, J. & Stewart. I. [1996] “From attractor to chaotic saddle: A tale of transverse instability,” Nonlinearity 9, 703-737.
6. Hayes S., Grebogi C., and Ott E., “Communicating with chaos,” Phys.Rev. Lett., Vol.70, pp. 3031-3034, 1993.
7. Chen G. and Dong X., From Chaos to Order: Perspectives, Methodologies and Applications. Singapore: World Sientific, 1998.
8. Alexander, J. C., Yorke, J. A., You, Z. and Kan, I. “Ridled basins,” Int. J. Bifurcation and Chaos Vol 2, pp.795-813, 1992.
9. Heagy, J. F., Platt, N. & Hammel, S. M. “Characterization of On-Off Intermittency,” Phys. Rev. E49, pp.1140-1150,1994.
10.Wright, J., “Method for Calculating a Lyapunov Exponents”, Phyical Review A,
Vol. 29, No. 5, pp. 2924-2927, 1984.
11.Pecora L. M. and Carroll T. L., “Synchronization in Chaotic Systems,” Phys. Rev.
Lett., Vol. 64, No. 8, pp. 821-824, 1990.
12. Liao T.-L and Huang N.-S., “An Observer-Based Approach for Chaotic
Synchronization with Applications to Secure Communications, “ IEEE Trans.
Circuits Syst. I, Vol. 46,pp.1144-1150,1990.
13. Chen Guanrong, Control and Anticontrol of Chaos, Control of Oscillations and
Chaos, 1997. Proceedings, 1997 1st International Conference, Vol. 2, pp.181 -186
Vol.2, 1997.
14 Chen Guanrong and Lai Dejian, “Anticontrol of Chaos via Feedback”, Decision
and Control, 1997, Proceedings of the 36th IEEE Conference on, , pp.367 -372,
Vol. 1, 1997.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top