|
1. F. Roozeboom, Advances in rapid thermal and integrated processing, Kluwer Academic Publishers (1996). 2.C. P. Yin, C.C. Hsiao and T. F. Lin, Improvement in wafer temperature uniformity and flow pattern in a lamp heated rapid thermal processor, Journal of Crystal Growth, 217 (1-2) (2000) 201-210. 3.R. Gardon and J. C. Akfirat, The role of turbulence in determining the heat-transfer characteristics of impinging jets, Int. J. Heat Mass Transfer 8 (1965) 1261-1272. 4.R. Gardon and J. C. Akfirat, Heat transfer characteristics of impinging two-dimensional air jets, ASME Transac. C, J. Heat Transfer, (1966) 101-108. 5.M. T. Scholtz and O. Trass, Mass transfer in a nonuniform impinging jet, AIChE J., 16 (1970) 82-96. 6.E. M. Sparrow and T. C. Wong, Impingment transfer coefficients due to initially laminar slot jets, Int. J. Heat Mass Transfer, 18 (1975) 597-605. 7.J. H. Masliyah and T. T. Nguyen, Mass transfer due to an impinging slot jet, Int. J. Heat Mass Transfer, 22 (1979) 237-244. 8.P. Hrycak, Heat transfer from round impinging jets to a plat plate, Int. J. Heat Mass Transfer, 26, (1981) 1857-1865. 9.Ì. B. Özdermir and J. H. Whitelaw, Impingement of an axisymmetric jet on unheated and heated flat plates, J. Fluid Mech., 240 (1992) 503-532. 10.T. Liu and J. P. Sullivan, Heat transfer and flow structures in an excited circular impinging jet, Int. J. Heat Mass Transfer, 39 (1996) 3695-3706. 11.R. Viskanta, Heat transfer to impinging isothermal gas and flame jets, Expl. Thermal Fluid Sci., 6 (1993) 111-134. 12.K. Jambunathan, E. Lai, M. A. Moss and B. L. Button, A review of heat transfer data for single circular jet impingment, Int. J. Heat and Fluid Flow, 13 (2) (1992) 106-115. 13.Martin H, Impinging jet flow heat and mass transfer, Advances in Heat Transfer, Academic Press, 1-59. 14.C. Carcasci, An experimental investigation on air impinging jets using visualization methods, Int. J. Therm. Sci., 38 (1999) 808-818. 15.H. Elbanna and J. A. Sabbagh, Fow visualization and measurements in a two-dimensional two-impinging-jet flow, AIAA Journal, 27 (4) (1988) 418-426. 16.G. H. Moustafa and E. Rathakrishnan, Studies on the flowfield of multijet with square configuration, AIAA Journal, 31 (7) (1993) 189-1191. 17.S. C. Arjocu and J. A. Liburdy, Near surface characterization of an impinging elliptic jet array, ASME Transac., J. Heat Transfer, 121 (1999) 384-390. 18.E. Villermaux and E. J. Hopfinger, Periodically arranged co-flowing jets, J. Fluid Mech., 263 (1994) 63-92. 19.M. C. Özturk, F. Y. Sorrell, J. J. Wortman, F. S. Johnson, and D. T. Grider, Manufacturability issues in rapid thermal chemical vapor deposition, IEEE Trans. of Semiconductor Manufacturing, 4 (2) (1991) 155-165. 20.C. R. Biber, C. A. Wang, and S. Motakef, Flow regime map and deposition rate in vertical rotating-disk OMVPE reactor, Journal of Crystal Growth 123 (1992) 545-554. 21.C. Weber and V. C. Opdrop, Modeling of gas flow patterns in a symmetric vertical Vapor-Phase-Expitaxy reactor allowing asymmetric solution, J. Appl. Phys., 67 (1990) 109-2118. 22.D. I. Fotiads, and S. Kieda, Transport phenomena in vertical reactors for metalorganic vapor phase epitaxy, Journal of Crystal Growth, 102 (1990) 441-470. 23.C. R. Kleijn, Th. H. van der Meer, and Hoogendoorn, C. J., A Mathematical model for LPCVD in a single wafer reactor, J. Electrochem. Soc., 136 (11) (1989) 3423-3433. 24.S. Patnaik, R. A. Brown, and C. A. Wang, Hydrodynamic dispersion in rotating-disk OMVPE reactors: Numerical simulation and experimental measurements, Journal of Crystal Growth, 96 (1989) 153-174. 25.C. R. Biber, C. A. Wang, and S. Motakef, Flow regime map and deposition rate in vertical rotating-disk OMVPE reactor, Journal of Crystal Growth, 123 (1992) 545-554. 26.H. Caquineau and B. Despax, Influence of the reactor design in the case of silicon nitride PECVD, Chemical Engineering Science, 52 (17) (1997) 2901-2914. 27.C. R. Kleijn, K. J. Kuijlaars and H. E.A. Van Den Akker, Design and scale-up of chemical vapor deposition reactors for semiconductor processing, Chemical Engineering Science, 51 (10) (1996) 2119-2128. 28.D. Lytle, and B. W. Webb, Air Jet Impingement heat transfer at low nozzle-plate spacings, Int. J. Heat and Mass Transfer, 37 (12) (1994) 1687-1697. 29.A. H. Dilawari, and J. Szekely, A mathemical representation of a modified stagnation flow reactor for MOCVD application, Journal of Crystal Growth, 108 (1991) 491-498. 30.G. Wahl, Hydrodynamic description of CVD processes, Thin Solid Film, 40 (1977) 13-26. 31.W. K. Cho, D. H. Choi and M. —U. Kim, Optimization of the inlet velocity profile for uniform epitaxial growth in a vertical metalorganic chemical vapor deposition reactor, Int. J. of Heat and Mass Transfer, 42 (1999) 4143-4152. 32.H. V. Santen, C. R. Kleijn and H. E.A. V. D. Akker, Symmetry breaking in a stagnation-flow CVD reactor, Journal of Crystal Growth, 212 (2000) 311-323. 33.G. Evan, R. Grief, A numerical model of the flow and heat transfer in a rotating disk chemical vapor deposition reactor, Journal of Heat Transfer, 109 (1987) 928-935. 34.W. S. Winter, G. H. Evans, R. Grief, Mixed binary convection in rotating disk chemical vapor deposition reactor, International Journal of Heat and Mass Transfer 40(3) (1997) 737-744. 35.P. N. Gadgil, Optimization of a stagnation point flow reactor design for metalorganic chemical vapor deposition by flow visualization, Journal of Crystal Growth, 134(1993) 302-312. 36.Y. Kusumoto, T. Hayashi and S. Komiya, Numerical analysis of the transort phenomena in MOCVD process, Japanese Journal of Applied Physics, 24 (5) (1985) 620-625. 37.P. N. Gadgil, Single wafer processing in stagnation point flow CVD reactor: prospects, constrains and reactor design, Journal of Electronic Materials, 22 (2) (1993) 171-177. 38.I. Kim and D. G. Chang and P. D. Dapkus, Growth of InGaAsP in a stagnation flow vertical reactor using TBP and TBA, Journal of Crystal Growth, 195 (1998) 138-143. 39.R. Detaton, and H. Z. Massoud, Effect of thermally induced stresses on the rapid thermal oxidation, J. Appl. Phys. 70 (7) (1991) 3588-3592. 40.H. A. Lord, Thermal and stress analysis of semiconductor wafer in a rapid thermal processing oven, IEEE Trans. of Semiconductor Manufacturing, 1 (3) (1988) 105-114. 41.P. Vandenabeele, and K. Maex, Temperature control and temperature uniformity during rapid thermal processing, Mat. Res. Soc. Symp. Proc., 224 (1991) 185-196. 42.P. Vandenabeele, K. Maex and R. D. Keersmaecker, Rapd thermal annealing / chemical vapor deposition and integrated processing, Mat. Res. Soc. Symp. Proc., 146 (1989) 149-160. 43.B. Feil, M. Daw, and J. Moench, First International Rapid Thermal Processing Conference, Monterey, Scottsdale, AZ, 114 (1993). 44.J. F. Buller, M. Farahani, and S. Grag, Second International Rapid Thermal Processing Conference, Monterey, CA, 52 (1994). 45.R. P. S. Thakur, A. Martin, W. T. Fackrell, and R. Barbour, Stress and warpage studies of silicon and patterned films during rapid thermal processing (RTP), Mat. Res. Soc. Symp. Proc., 303 (1993) 189-195. 46.S. M. Hu, Stress-related problems in silicon technology, J. Appl. Phys., 70 (6) (1991) 53-80. 47.J. P. Hebb, K. F. Jensen and E.W. Egan, The potential effect of multilayer pattern on temperature uniformity during rapid thermal processing, Mat. Res. Soc. Symp. Proc., 387 (1995) 21-27. 48.J. M. Dihac, N. Nolhier, C. Ganibal and C. Zanchi, Thermal modeling of a Wafer in a rapid thermal processor, IEEE Trans. of Semiconductor Manufacturing, 8 (4) (1995) 432-439. 49.A. Tillmann, S. Buschbaum, S. Frigge, U. Kreiser, D. Löfelmacher, T. Theilig and P. Schmid, Modeling and off-line optimization of a 300 mm rapid thermal processing system, Materials Science in Semiconductor Processing, 1 (1998) 181-186. 50.S. M. Hu, Temperature distribution and stress in circular wafers in a row during radiative cooling, J. Appl. Phys., 10 (11) (1969) 4413-4423. 51.R. Deaton and H. Z. Massoud, Effect of thermally induced stresses on the raid-thermal oxidation of silicon, J. Appl. Phys., 10 (11) (1969) 4413-4423. 52.F. Y. Sorrell, M. J. Fordham, M. C. Özturk and J. J. Wortman, Temperature uniformity in RTP furances, IEEE Trans. of Electron Devices, 39 (1) (1992) 75-80. 53.R. Kakoschke and E. Bubmann, Simulation of temperature effects during rapid rhermal processing, Mat. Res. Soc. Symp. Proc. 146 (1989) 473-482. 54.T. J. Riley, and R. S. Gyurcsik, Rapid thermal processor modeling, control, and design for temperature uniformity, Mat. Res. Soc. Symp. Proc., 303 (1993) 223-229. 55.R. Kakoshke, E. Bubmann, and H. Foll, Modeling of wafer heating during rapid thermal processing, Appl. Phys. A50 (2) (1990) 141-150. 56.Y. M. Cho, A. Paulraj, T. Kailath and G. H. Xu, A contribution to optimal lamp design in rapid thermal processing, IEEE Trans. Semicond. Manuf., 7 (1) (1991) 34-41. 57.S. J. Kline, and F. A. Mcclintock, Describing uncertainties in single-sample experiment, Mechanical Engineering 75 (1953) 3-8. 58.R. J. Moffat, Contributions to the theory of single-sample uncertainty analysis, J. Fluid Eng., 104 (1982) 250-260. 59.Thermophysical properties of fluid, JSME Data Book (1983). 60.F. K. White, Viscous fluid flow, McGraw-Hill, New York, 2nd ed.(1991) pp.298-304. 61.A. H. Dilawari, and J. Szekely, A Mathemical representation of a modified stagnation flow reactor for MOCVD application, Journal of Crystal Growth, 108 (1991) 491-498. 62.G. Hahl, Hydrodynamic description of CVD processes, Thin Solid Film, 40 (1977) 13-26.
|