跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.49) 您好!臺灣時間:2023/02/09 14:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉家彰
研究生(外文):Chia-Chang Liu
論文名稱:漸開線錐形齒輪對之特性研究
論文名稱(外文):A Characteristic Study on Beveloid Gear Pairs
指導教授:蔡忠杓蔡忠杓引用關係
指導教授(外文):Chung-Biau Tsay
學位類別:博士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:155
中文關鍵詞:漸開線錐形齒輪推拔滾削齒輪嚙合原理齒形過切直進輪磨法齒面接觸分析接觸橢圓有限元素應力分析
外文關鍵詞:Beveloid GearConical Beveloid GearTaper HobbingTheory of Gear MeshingTooth UndercuttingInfeed GrindingTooth Contact AnalysisContact EllipseFinite Element Stress Analysis
相關次數:
  • 被引用被引用:16
  • 點閱點閱:659
  • 評分評分:
  • 下載下載:150
  • 收藏至我的研究室書目清單書目收藏:1
本論文依據齒輪原理與創成機構推導出傳統型漸開線錐形齒輪以及凹面漸開線錐形齒輪之數學模式,並利用所推導之數學模式進行齒面接觸分析、嚙合幾何分析、曲率分析、接觸橢圓模擬及有限元素應力分析以驗證此一齒輪對在平行軸、相交軸以及交錯軸嚙合狀況下之之接觸特性。模擬之結果反映了漸開線錐形齒輪所特有的接觸特性。凹面漸開線錐形齒輪不但可藉由增大接觸橢圓之面積來改善傳統漸開線錐形齒輪負荷過低的缺點,同時仍能保留傳統漸開線錐形齒輪對裝配誤差不敏感的特性。因此,本論文所提出之凹面漸開線錐形齒輪具有產業上之應用性和優越性,並可適用於高負載及高精密情形下之傳動。本論文主要的研究主題包括以下四大項:
一、 依據齒輪原理與推拔滾削之機構以推導出傳統漸開線錐形齒輪的齒面數學模式,並經由創成時刀具與齒胚的相對速度及其嚙合方程式,探討齒面過切的條件。
二、 進行傳統漸開線錐形齒輪對在平行軸、相交軸以及交錯軸嚙合狀況下之齒面接觸分析及嚙合幾何分析,並依據微分幾何與曲率分析理論,求得兩嚙合齒面之主軸曲率與主軸方向,進而探討齒輪接觸橢圓的大小及方向。
三、 凹面漸開線錐形齒之數學模式分別依據三留 謙一教授所提出之輪磨法以及作者所提出之新型輪磨法推導出來,並利用所推導出之數學模式進行齒輪接觸模擬,以探討凹面漸開線錐形齒輪之接觸特性。模擬之結果顯示作者所提出之新型輪磨法可有效改善利用三留 謙一教授之方法所創成之螺旋凹面漸開線錐形齒輪對具有傳動誤差之缺點。和傳統漸開線錐形齒輪相比較,凹面漸開線錐形齒輪不但具有較大的接觸橢圓,同時在非平行軸嚙合狀況下對裝配誤差亦不敏感。
四、 依據所推導出之凹面漸開線錐形齒輪對之數學模式,發展建構三維的齒面網格自動分割程式,並利用有限元素分析軟體,進行一對接觸齒的應力分析。
In this thesis, the mathematical models of both conventional beveloid gears and concave beveloid gears are derived based on the theory of gearing and the generating mechanism. Investigations including tooth contact analysis, meshing geometry analysis, curvature analysis, contact ellipse simulations and finite element stress analysis are performed to examine the contact characteristics of the beveloid gear pairs with parallel, intersected and crossed axes. The simulation results reflect the special contact nature of beveloid gears . Compared with conventional beveloid gear pairs, concave beveloid gear pairs not only solve the problems associated with low-load capacity by enlarging the contact ellipses, but also retain the special property of insensitivity to assembly errors under non-parallel axes meshing. The concave beveloid gear proposed in this study indeed possess its applicability and superiority, thus fits the requirements of high load and high precision motion transmission between non-parallel axes. The research subjects of this thesis include the following four major items:
(1) The mathematical model of the conventional beveloid gear is developed based on the theory of gearing and the taper hobbing mechanism. Meanwhile, the conditions of tooth undercutting is investigated by considering the relative velocity of the generating tool and the gear blank along with their equation of meshing.
(2) Tooth contact analysis and meshing geometry analysis are performed to examine the meshing and bearing contact of the conventional beveloid gear pairs with intersected, crossed and parallel axes. Based on the differential geometry and curvature theory, the principal directions and curvatures of the mating tooth surfaces are investigated, and the orientations and dimensions of the contact ellipses are also studied.
(3) Two mathematical models of concave beveloid gears are derived according to Mitome’s grinding method and the novel grinding method proposed by the author, respectively. Based on the developed mathematical models, the contact simulations are performed and the characteristics of concave beveloid gear pairs are investigated. Simulation results indicate that the proposed novel grinding method ameliorates the drawback of Mitome’s grinding method by eliminating the transmission error of the helical concave beveloid gear pairs. In contrast to conventional beveloid gear pairs, the gears ground by the proposed novel grinding method not only have larger contact ellipses, but also mesh conjugately with non-parallel axes, although assembly errors exist.
(4) An automatic mesh-generation computer program for the three-dimensional tooth model is developed based on the mathematical model of the concave beveloid gear. Meanwhile, finite element stress analysis of a pair of contact teeth is performed to investigate the stress distribution on the tooth surface.
ABSTRACT i
ACKNOWLEDGEMENT v
TABLE OF CONTENTS vi
LIST OF TABLES viii
LIST OF FIGURES x
NOMENCLATURE xiii
CHAPTER 1 Introduction 1
1.1 Features of Beveloid Gears 1
1.2 Literature Reviews 2
1.3 Motivation and Thesis Overview 4
CHAPTER 2 Mathematical Model and Tooth Undercutting Analysis of Conventional Beveloid Gears 7
2.1 Introduction 7
2.2 Generation Concept 7
2.3 Mathematical Model of Imaginary Rack Cutter 8
2.4 Mathematical Model of Conventional Beveloid Gear Tooth Surface 16
2.5 Basic Dimensions of Conventional Beveloid Gears 22
2.6 Tooth Undercutting Analysis of Conventional Beveloid Gears 27
2.6.1 Calculation of Relative Velocity 27
2.6.2 Conditions of Tooth Undercutting 28
2.6.3 Examples and Discussions 30
2.7 Conclusions 41
CHAPTER 3 Meshing Simulations of Conventional Beveloid Gear Pairs 42
3.1 Introduction 42
3.2 Mathematical Model of Conventional Beveloid Gear Pairs 43
3.3 Meshing Model of Beveloid Gear Pairs 44
3.4 Tooth Contact Analysis 48
3.5 Curvature Analysis and Contact Ellipses 51
3.5.1 Principal Directions and Curvatures of Rack Cutter Surface 52
3.5.2 Principal Directions and Curvatures of Generated Pinion Tooth Surface 53
3.5.3 Contact Ellipses 57
3.6 Meshing Geometry Analysis 59
3.6.1 Line of Action of Conventional Beveloid Gear Pairs with
Non-parallel Axes 61
3.6.2 Plane of Action of Conventional Beveloid Gear Pair with
Parallel Axes 67
3.7 Examples for Gear Meshing Simulations 69
3.8 Conclusions 89
CHAPTER 4 Mathematical Model and Meshing Simulations of Concave
Beveloid Gear Pairs 90
4.1 Introduction 90
4.2 Infeed Grinding Method 91
4.3 Mathematical Model of Concave Beveloid Gear Pairs 94
4.3.1 Mathematical Model of Grinding Wheel 94
4.3.2 Gears Ground by Mitome’s Grinding Method 98
4.3.3 Gears Ground by the Novel Grinding Method 103
4.4 Curvature Analysis and Contact Ellipses 104
4.4.1 Principal Directions and Curvatures of Grinding Wheel
Surface 104
4.4.2 Principal Directions and Curvatures of Pinion Tooth Surface 105
4.4.3 Contact Ellipses 106
4.5 Examples for Meshing Simulations of Concave Beveloid Gear Pairs 106
4.6 Meshing Geometry of Concave Beveloid Gear pairs 120
4.7 Conclusions 126
CHAPTER 5 Finite Element Stress Analysis 127
5.1 Introduction 127
5.2 Finite Element Contact Analysis 128
5.2.1 Finite Element Model 129
5.2.2 Surface Definition and Interaction Properties 131
5.2.3 Load and Boundary Conditions 131
5.2.4 Contact Algorithm 132
5.3 Simulation Results and Discussions 134
5.4 Conclusions 144
CHAPTER 6 Conclusions and Future Work 148
6.1 Conclusions 148
6.2 Future Work 149
REFERENCES 150
VITA 155
[1] Beam, A. S., “Beveloid Gearing,” Machine Design, Vol. 26, No. 12, pp. 220-238, 1954.
[2] Merritt, H. E., “Conical Involute Gears”, Gears, 3rd. ed., Issac Pitman and Sons, London, pp. 165-170, 1954.
[3] Smith, L. J., “ The Involute Helicoid and the Universal Gear,” Gear Technology, Nov-Dec pp. 18-27, 1990.
[4] Purkiss, S. C., “Conical Involute Gears — part 1 ”, Machinery, Vol. 89, pp. 1413-1420, 1956.
[5] Purkiss, S. C., “Conical Involute Gears — part 2 ”, Machinery, Vol. 89, pp. 1465-1467, 1956.
[6] Szekely, I., Bocian, I. and Chioreanu, V., “General Quasi-involute Gear Toothing,” Proceedings of JSME International Symposium on Gearing and Power Transmissions, Vol. 1, pp. 23-28, Tokyo, Japan, 1981.
[7] Mitome, K., “Table Sliding Taper Hobbing of Conical Gear Using Cylindrical Hob, Part 1: Theoretical Analysis of Table Sliding Taper Hobbing,” ASME Journal of Engineering for Industry, Vol. 103, pp. 446-451, 1981.
[8] Mitome, K., “Table Sliding Taper Hobbing of Conical Gear Using Cylindrical Hob, Part 2: Hobbing of Conical Involute Gear,” ASME Journal of Engineering for Industry, Vol.103, pp. 452-455, 1981.
[9] Mitome, K., “Conical Involute Gear, Part1: Design and Production System,” Bulletin of the JSME, Vol. 26, No. 212 , pp. 299-305, 1983.
[10] Mitome, K., “Conical Involute Gear, Part2: Design and Production System of Involute Pinion-Type Cutter,” Bulletin of the JSME, Vol. 26, No. 212 , pp. 306-312, 1983.
[11] Mitome, K., “Conical Involute Gear, Part3: Tooth Action of a Pair of Gears,” Bulletin of the JSME, Vol. 28, No. 245 , pp. 2757-2764, 1985.
[12] Mitome, K., “Inclining Work-Arbor Taper Hobbing of Conical Gear Using Cylindrical Hob”, ASME Journal of Mechanical Design, Vol. 108 , pp. 135-141, 1986.
[13] Mitome, K., “Conical Involute Gear (Design of Nonintersecting-Nonparallel-Axis Conical Involute Gear),” JSME International Journal, Series III, Vol. 34, No. 2 , pp. 265-270, 1991.
[14] Mitome, K., “A New Type of Master Gears of Hard Gear Finisher Using Conical Involute Gears,” Proceedings of IFToMM 8th World Congress, Vol. 2, pp. 597-600, Prague, 1991.
[15] Mitome, K. and Yu, Z., “Design and Calculation System of Straight Conical Involute Gear,” Proceedings of International Symposium on Machine Elements, Vol. 1, pp. 206-211, Beijing, China, 1993.
[16] Mitome, K. and Yu, Z., “Design and Calculation System of a Pair of Intersecting-Axes Straight Conical Involute Gears,” Proceedings of International Symposium on Machine Elements, Vol. 1, pp. 224-229, Beijing, China, 1993.
[17] Mitome, K., “Design of Miter Conical Involute Gears Based on Tooth Bearing,” JSME International Journal, Series C, Vol. 38, No. 2 , pp. 307-311, 1995.
[18] Mitome, K., “ Machine Element for Transmitting Accurate Rotation,” Journal of Advanced Automation Technology, Vol. 7, No. 3 , pp. 197-203, 1995.
[19] Mitome, K., “Concave Conical Gear,” Proceedings of JSME International Conference on Motion and Power Transmissions, pp. 601-606, Hiroshima, Japan, 1991.
[20] Mitome, K., “Infeed Grinding of Straight Conical Involute Gear,” JSME International Journal, Series C, Vol. 36, No. 4 , pp. 537-542, 1993.
[21] Mitome, K., Ohmachi, T., Komatsubara, H. and Tamura, T., “Generating of Straight Concave Conical Gear,” Proceedings of 4th World Congress on Gearing Power Transmission, Paris, pp.609-621, 1999.
[22] Komatsubara, H., Mitome, K., Ohmachi, T. and Watanabe, H., “Development of Concave Conical Gear Used for Marine Transmission,” Proceedings of 4th World Congress on Gearing Power Transmission, Paris, pp.683-695, 1999.
[23] Mitome, K., “Development of Over-Ball Measurement of Straight Conical Involute Gear,” Transactions of the JSME , Series C, Vol. 57, No.536, pp. 1329-1336, 1991.
[24] Zhang, J., Mitome, K. and Ohmachi, T., “Control of Finishing Dimensions of Straight Concave Conical Gear,” Transactions of the JSME , Series C , Vol. 65, No.640, pp. 4807-4812, 1999.
[25] Zhang, J., Mitome, K. and Ohmachi, T., “Development of Center-Ball Measurement of Helical Concave Conical Gear,” Transactions of the JSME , Series C , Vol. 66, No.651, pp. 3705-3710, 2000.
[26] Mitome, K., Gotou, T. and Ueda, T., “Tooth Surface Measurement of Conical Involute Gears by CNC Gear-measuring Machine,” ASME Journal of Mechanical Design, Vol. 120 , pp. 358-363, 1998.
[27] Ohmachi, T., Komatsubara, H. and Mitome, K., “Tooth Surface Strength of Intersecting-Axes Conical Gears,” Proceedings of 4th World Congress on Gearing Power Transmission, Paris, pp.851-859, 1999.
[28] Ohmachi, T., Iizuka, K. and Mitome, K., “Tooth Surface Fatigue Strength of Normalized Steel Conical Involute Gears,” Proceedings of 8th International Power Transmission and Gearinf Conference., Baltimore, DETC2000/PGT-14383 (CD-ROM), 2000.
[29] Ohmachi, T., Sato, J. and Mitome, K., “Allowable Contact Strength of Normalized Steel Conical Involute Gears,” Proceedings of JSME International Conference on Motion and Power Transmissions, pp. 199-204, Fukuoka, Japan, 2001.
[30] Innocenti, C., “Analysis of Meshing of Beveloid Gears,“ Mechanism and Machine Theory, Vol. 32, pp. 363-373, 1997.
[31] Brauer, J., “ Analytical Geometry of Straight Conical Involute Gears,“ Mechanism and Machine Theory, Vol. 37, pp. 127-141, 2002.
[32] Litvin, F. L., Theory of Gearing, NASA Publication RP-1212, Washington D. C., 1989.
[33] Litvin, F. L., Gear Geometry and Applied Theory, Prentice-Hall, New Jersey, 1994.
[34] Michalec, G. W., Precision Gearing: Theory and Practice, John Wiley & Sons, New York, 1966.
[35] Shigley, J. E. and Mischke, C. R., Mechanical Engineering Design, 5th ed., McGraw-Hill, New York, 1989.
[36] Chen, W. H. and Tsai, P., “Finite Element Analysis of an Involute Gear Drive Considering Friction Effects,” ASME Journal of Engineering for Industry, Vol. 111, pp. 94-111, 1989.
[37] Tsay, C. B. and Fong, Z. H., “Computer Simulation and Stress Analysis of Helical Gears with Pinion Circular Arc and Gear Involute Teeth,” Mechanism and Machine Theory, Vol. 26, pp. 145-154, 1991.
[38] Arikan M. A. S. and Tamar, M., “Tooth Contact and 3-D Stress Analysis of Involute Helical gears,” ASME, International Power Transmission and Gearing Conference, De-Vol. 43-2, pp. 461-468, Scottdale, Arizona, U.S.A., 1992.
[39] Lu, J., Litvin, F. L. and Chen, J. S., “ Load Share and Finite Element Stress Analysis for Double Circular-Arc Helical Gears,” Mathematics and Computer Modelling, Vol. 21, No. 10, pp. 13-30, 1995.
[40] Filiz, I. H. and Eyercioglu, O., “Evaluation of Gear tooth Stresses by Finite Element Method,” ASME Journal of Mechanical Design, Vol. 117, pp. 232-239, 1995.
[41] Litvin, F. L., Chen, J. S., Lu, J. and Handschuh, R. F., “Application of Finite Element Analysis for Determination of Load Share, Real Contact Ratio, Precision of Motion, and Stress Analysis,” ASME Journal of Mechanical Design, Vol. 118, pp. 561-567, 1996.
[42] Tsai, M. H. and Tsai, Y. C., “A Method for Calculating Static Transmission Errors of Plastic Spur Gears Using FEM Evaluation,” Finite Elements in Analysis and Design, Vol.27, pp. 345-357, 1997.
[43] Handschuh, R. F. and Bibel, G. D., “Experimental and Analytical Study of Aerospace Spiral Bevel Gear Tooth Fillet Stresses,” ASME Journal of Mechanical Design, Vol. 121, pp. 565-572, 1999.
[44] Simon, V., “FEM Stress Analysis in Hypoid Gears,” Mechanism and Machine Theory, Vol. 35, pp. 1197-1220, 2000.
[45] Litvin, F. L., Lian, Q. and Kapelevich, A. L., “Asymmetric Modified Spur Gear Drives: Reduction of Noise, Localization of Contact, Simulation of Meshing and Stress Analysis,” Computer Method in Applied Mechanics and Engineering, Vol. 188, pp. 363-390, 2000.
[46] Li, C. H., Chiou, H. S., Hung, C. H., Chang, Y. Y., and Yen, C. C., “ Integration of Finite Element Analysis and Optimum Design on Gear Systems,“ Finite Elements in Analysis and Design, Vol. 38, No.3 pp. 179-192, 2002.
[47] Chen, Y. C. and Tsay, C. B., “ Stress Analysis of a Helical Gear Set with Localized Bearing Contact,“ Finite Elements in Analysis and Design, Vol. 38, No.8 pp. 707-723, 2002.
[48] Argyris, J., Fuentes, A. and Litvin, F. L., “Computerized Integrated Approach for Design and Stress Analysis of Spiral Bevel Gears,” Computer Method in Applied Mechanics and Engineering, Vol. 191, pp. 1057-1095, 2002.
[49] Litvin, F. L., Fuentes, A., Fan, Q. and Handschuh, R. F., “Computerized Design, Simulation of Meshing, and Contact and Stress Analysis of Face-milled Formate Generated Spiral Bevel Gears,” Mechanism and Machine Theory, Vol. 37, pp. 441-459, 2002.
[50] Hibbitt, Karlsson & Sorensen, ABAQUS/Standard 5.8, User’s Manual, U.S.A., 1998.
[51] Boresi, A. P., Schmidt, R. J. and Sidebottom, O. M., Advanced Mechanics of Materials, 5th Ed. John Wiley and Sons, New York, 1993.
[52] Beer, F. P. and Johnston, E. R., Mechanics of materials, 2nd Ed. McGraw-Hill, London, 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top