跳到主要內容

臺灣博碩士論文加值系統

(3.87.33.97) 您好!臺灣時間:2022/01/27 16:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張振銓
研究生(外文):Chen Chuan Chang
論文名稱:高深寬比微結構模仁的製作程序的研究─利用矽基加工技術
論文名稱(外文):Investigation of Fabricating Process for the Mold Insert with High Aspect Ratio Microstructures ─ Using the Silicon Processing Technology
指導教授:陳仁浩
指導教授(外文):Ren Haw Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:110
中文關鍵詞:蝕刻模仁高深寬比電鑄導電性基板電阻值摻雜
外文關鍵詞:ICPwetdryetchingmoldingLIGAinsertmold
相關次數:
  • 被引用被引用:12
  • 點閱點閱:623
  • 評分評分:
  • 下載下載:106
  • 收藏至我的研究室書目清單書目收藏:3
本研究以製作高深寬比微結構模仁為目的,採用與半導體製程相容性極強之UV-LIGA的製作程序,利用矽<100>為載具,針對電鑄時會發生的鍍層缺陷問題,開發製作改良的導電性基板,且設計一系列實驗預測及印證在製作高深寬比微結構模仁時電鑄所發生的問題,並研究以及解決。主要的探討主題如下:(1)基板導電層製作與其電學特性,(2)結構層製作以及內應力,(3)光阻塗佈時之旋佈特性,(4)曝光條件以及光罩設計補償,(5)乾式及濕式蝕刻製程以及蝕刻阻擋層之製作,(6)導電性基板的電鑄特性之探討。
由實驗以及研究結果顯示:
1. 利用摻雜所製作的矽基化合物導電層基板對矽結構層之黏著性較金屬導電層對矽基板及矽結構層之黏著性為佳,但矽基化合物的體電阻以及面電阻係數較金屬導電層大,藉由控制摻雜磷的製程溫度與製程時間,得到與金屬導電層相同的電學特性。
2. 蝕刻製程上,光阻為濕式蝕刻之阻擋層,目的在製作乾式蝕刻之二氧化矽阻擋層。為了使微結構具備良好品質,必須精確掌握光罩之設計補償,以補償蝕刻時所造成之底切現象。此外在利用濕式蝕刻製作乾式蝕刻阻擋層時,必須考慮乾式蝕刻所需之蝕刻厚度,否則會因濕式蝕刻時之底切過大而造成乾式蝕刻阻擋層之尺寸誤差。
3. 在實際電鑄,摻雜磷之矽基導電性基板可獲得與金屬導電性基板同樣特性的微結構模仁。在使用KOH分離導電性基板以及電鑄微結構模仁時,利用矽基的導電性基板比金屬導電性基板少了一個製程步驟,可節省製程時間以及降低製程的複雜性。
This research is the fabricating process for the mold insert with high aspect ratio microstructures. We adopt the UV-LIGA process that reconciled with the semiconductor manufacturing process as our manufacturing process. Using <100> oriented silicon wafer, to aim at the defects that happened in electroforming microstructures, and to develop a new substrate with electric conductivity. Design a series of experiments to predict and solve the problems in manufacturing mold insert with high aspect ratio microstructures. The main investigation subjects are follows: (1) fabricating the substrate layer with electric conductivity, and its electric characteristics, (2) fabricating the structure layer, and investigating its stress, (3) spinning characteristics when spin photoresist, (4) exposure condition, and compensation design of masks, (5) fabricating the etching masks of dry & wet etching, (6) the characteristics of electroforming.
From the results of experiments and researchs shows:
1. The adhesion between doped phosphorous silicon wafer and silicide is better than the adhesion between sputtered metals and silicide. By controlling the process temperature and process time, the doped phosphorous silicons have almost the same sheet resistance and bulk resistance as metal ones.
2. In the etching process, photoresist is the wet etching mask when fabricating dry etching mask of the ICP. In order to obtain good quality of the microstructure, when considerating the undercut of wet etching, we need to do the compensation design of masks.
3. We can obtain the nickel microstructure mold insert that have the good quality in reality electroforming by using doped phosphorous silicon wafer substrate.
中文摘要......................................i
英文摘要......................................ii
致謝..........................................iii
目錄..........................................iv
表目錄........................................vi
圖目錄........................................vii
第一章 序論...................................1
1-1 前言...................................1
1-2 相關的知識基礎以及文獻回顧.............2
1-2.1 X光深刻電鑄模造製程技術................2
1-2.2 類LIGA製程技術.........................3
1-2.3 電鑄理論...............................4
1-3 研究動機與目的.........................6
第二章 製程規劃...............................11
2-1 實驗目的...............................11
2-2 使用實驗儀器及設備.....................11
2-3 製程規劃一 濺鍍金屬之導電性基板製作....12
2-4 製程規劃二 摻雜磷之導電性基板製作......15
2-5 光罩設計補償...........................16
第三章 高深寬比微結構模仁製作之程序...........24
3-1 實驗目的...............................24
3-2 光罩之設計.............................24
3-3 導電性基板之製作.......................24
3-3.1 晶圓清潔...............................24
3-3.2 導電層之製作...........................26
3-4 結構層之製作...........................27
3-5 蝕刻阻擋層之製作.......................28
3-5.1 濕式蝕刻阻擋層.........................28
3-5.2 乾式蝕刻阻擋層.........................29
3-6 微影製程...............................30
3-6.1 光源以及曝光系統.......................30
3-6.2 光阻塗佈...............................30
3-6.3 曝光...................................31
3-6.4 顯影...................................31
3-7 蝕刻製程...............................32
3-7.1 濕式蝕刻...............................32
3-7.2 乾式蝕刻...............................33
3-8 電鑄翻模...............................34
3-9 基板去除...............................34
3-10 成形...................................35
第四章 結果與討論.............................40
4-1 光罩設計補償...........................40
4-2 導電性基板的製作.......................42
4-3 結構層製作.............................44
4-4 顯影製程...............................46
4-4.1 旋轉速率與光阻厚度量測.................47
4-4.2 微影參數...............................47
4-5 濕式蝕刻結果...........................47
4-6 乾式蝕刻結果...........................48
4-7 實際電鑄結果...........................51
第五章 結論...................................92
參考文獻......................................96
使用設備功能與說明...........................104
[1] N. Maluf, “An Introduction to Microelectromechanical System Engineering, Norwood”, MA: Artech House, 2000.
[2] Leo O’Connor, and Harry Hutchinson, “Skyscrapers in a microworld”, Mechanical Engineering, Vol. 64, pp. 64-67, 2000.
[3] “Synchrontron Radiation as a Tool for Deep Lithography”, 羅一中,交通大學機械所X光微機械加工上課講義。
[4] W. S. N. Trimmer, “Microrobots and micromechanical system”, Sensors and Actuators, Vol. 19, pp. 267-287, 1989.
[5] Farrokh Ayazi, and Khalil Najafi, “A HARPSS Polysilicon Vibration Ring Gyroscope”, Journal of Microelectromechanical Systems, Vol. 10, No. 2, pp. 169-179, 2001.
[6] Tae Han Yoon, Eun Jung Hang, Dong Yong Shin, Se Ik Park, Seung Jae Oh, Sung Cherl Jung, Hyung Cheul Shin, and Sung June Kim, “A Micromachined Silicon Depth Probe for Multichannel Neural Recording”, IEEE Transaction on Biomedical Engineering, Vol. 47, No. 8, pp. 1082-1087, 2000.
[7] Farrokh Ayazi, and Khalil Najafi, “High Aspect Ratio Combined Poly and Single-Crystal Silicon (HARPSS) MEMS Technology”, Journal of Microelectromechanical Systems, Vol. 9. No. 3, pp. 288-294, 2000.
[8] M. McNie, D. King, C. Vizard, A. Holmes, and K. W. Lee, “High Aspect Ratio Micromachining (HARM) technologies”, Microsystem Technology, Vol. 6, pp. 184-188, 2000.
[9] T. Pandhumsoporn, M. Feldbaum, P. Gadgil, M. Puech, and P. Maquin, “High Etch Rate, Anisotropic Deep Silicon Etching for the Fabrication of Microsensors”, SPIE, Vol. 2879, 0-8194-2277-0/96, pp. 94-102. 1994.
[10] Ian Papautsky, John Brazzle, Harold Swerdlow, Robert Weiss, and A. Bruno Frazier, “Micromachined Pipette Arrays”, IEEE Transaction on Biomedical Engineering, Vol. 47, No. 6, pp. 812- 819, 2000.
[11] Paolo Dario, Maria Chiara Carrozza, Antonella Benvenuto, and Arianna Menciassi, “Micro-system in biomedical applications”, J. Micromech. Microeng., Vol. 10, pp. 235-244, 2000.
[12] Arnaud Delpoux, “Motorola and MEMMS: the way up to a surface micromachined accelerometer”, Microelectronics Journal, Vol. 28, pp. 381-387, 1997.
[13] Lee S. Tavrow, Stephen F. Bart, and Jeffrey H. Lang, “Operational characteristics of microfabricated electric motors”, Sensors and Actuators A, Vol. 35, pp. 33-44, 1992.
[14] Alessandra pedrocchi, Storrs Hoen, Giancarlo Ferrigno, and Antonio Pedotti, “Perspectives on MEMS in Bioengineering: A Novel Capacitive Position Microsensor”, IEEE Transaction on Biomedical Engineering, Vol.47, No. 1, pp. 8-11, 2000.
[15] Greg Paula, “An explosion in Microsystems technology”, Mechanical Engineering, pp. 71-72, September 1997.
[16] Chunchieh Huang, and Khalil Najafi, “Fabrication of Ultrathin p++ Silicon Microstructures Using Ion Implantation and Boron Etch-Stop” Journal of Microelectromechanical Systems, Vol. 10, No. 4, pp. 532-537, 2001.
[17] Seung-Hyun Son, Yong-Suk Park, and Sie-Young Choi, “New formation technology for a plasma display pnael barrier-rib structure using a precise metal mold fabrication by the UL-LIGA process.” Journal of Micromechanics and Microengineering,” Vol. 12, 2002 pp. 63-69.
[18] M. Madou, “Fundamentals of Microfabrication,” New York, CRC Press, 1997.
[19] Julian W. Garder, “Microsensors Principles and Applications”, Wiley.
[20] 邱燦賓、施敏,“電子束微影技術”, 科學發展月刊 National Science Council Monthly, Vo. 28, No. 6, pp.423-434.
[21] 楊啟榮,“微機電LIGA製程技術簡介”,科儀新知,Vol. 19, No. 4, pp. 4-17, 1998.
[22] 吳清祈,鍾震桂,“微機電系統技術簡介”,科儀新知,Vol. 18, No. 3, pp. 26-40, 1996.
[23] H Schröder and E Obermeier, “A new model for Si {100} convex corner undercutting in anisotropic KOH etching”, J. Micromech. Microeng., Vol. 10, pp. 163-170, 2000.
[24] Gui-zhen Yan, Philip C.H. Chan, I-Ming Hsing, Rajnish K. Sharma, and Jonny K.O. Sin, “An Improved TMAH Si-etching Solution without Attacking Exposed Aluminum”, 0-7803-5273-4/00 IEEE 2000, pp. 562-567, 2000.
[25] Kei Ishihara, Chi-Fan Yung, Arturo A. Ayón, and Martin A. Schmidt, “An Inertial Sensor Technology Using DRIE and Wafer Bonding with Interconnecting Capability”, Journal of Microelectromechanical Systems, Vol. 8 No. 4, pp. 408-408, 2001.
[26] Gwiy-Sang Chung, “Anisotropic Etching Characteristics of Silicon in TMAH : IPA : Pyrazine Solutions”, Sensors and Materials, Vol.12 No.3, pp. 133-142, 2000.
[27] Elin Steinsland, Terje Finstad, and Anders Hanneborg, “Etch rates of (100), (111) and (110) single-crystal silicon in TMAH measured in situ by laser reflectance interferometry”, Sensors and Actuators A, Vol. 86, pp. 73-80, 2000.
[28] R. Edwin Oosterbroek, J. W. (Erwin) Berenschot, Henri V. Jasper Nijdam, Grégory Pandraud, Albert van der Berg, and Miko C. Elwenspoek, “Etching Methodologies in <111>-Oriented Silicon Wafers”, Journal of Microelectromechanical System, Vol. 9, No. 3, pp. 390-398, 2000.
[29] Ernest Bassous, “Fabricated of Novel Three-Dimensional Microstructures by the Anisotropic Etching of (100) and (110) Silicon”, IEEE Transaction on Electron Devices, Vol. ED-25, No.10, pp. 1178-1184, 1978.
[30] E. Cianci, V. Foglietti, F. Vitali, D. Lorenzetti, A. Notargiacomo, and E. Giovine, “Micromachined Silicon Grisms: High Resolution Spectroscopy in the near infrared”, Microelectronic Engineering, Vol. 53, pp. 543-546, 2000.
[31] Meint J. de Boer, R. Willem Tjerkstra, J. W. (Erwin) Berenschot, Henri V. Jansen, G. J. Burger, J. G. E. (Han) Gardeniers, Miko Elwenspoke, and Albert van den Berg, “Micromachining of Buried Micro Channels in Silicon”, Journal of Microelectromechanical System, Vol. 9, No. 1, pp. 94-103, 2000.
[32] Irena Zubel, “Silicon anisotropic etching in alkaline solutions II On the influence of anisotropy on the smoothness of etched surfaces”, Sensors and Actuators A, Vol. 70, pp. 260-268, 1998.
[33] Akira Koide, Kazuo Sato and Shinji Tanaka, “Simulation of two-dimensional etch profile of silicon during orientation-dependent anisotropic etching”, CH2957-9/91/0000-0216 IEEE, pp. 216-220, 1991.
[34] Xinxin Li, Rongming Lin, Jianmin Miao, and Minhang Bao, “Study on convex-corner undercutting formed by masked-maskless etching in aqueous KOH”, J. Micromech. Microeng., Vol. 10, pp. 309-313, 2000.
[35] P Mazur and T Lewowski, “UPS study of KOH layers on Si (100) surface”, Vacuum, Vol. 46 No. 5/6, pp. 417-418, 1995.
[36] 廖伯佑、李盈壕,“濕式化學品在半導體製程中之應用”,電子材料與雜誌,第十期,pp:135-144.
[37] W. Ehrfeld, P. Bley, F. Gotz, J. Mohr, D. Munchmeyer, and W. Schelb, J., “Process in deep-etch synchrotron radiation lithography,” Journal of Vacuum Science Technology B, Vol. 6, No. 1, pp. 178-182, 1988.
[38] 林敏雄,吳清沂。李篤育,黃瑞星,“我國微系統技術發展策略”,工程月刊,pp. 2~16,七月,1999.
[39] A. Schmidt, W. Ehrfeld, H. Lehr, L. Müller, F. Reuther, M. Schmidt, and Th. Zetterer, “Aligned Double Exposure in Deep X-ray Lithography”, Microelectronic Engineering, Vol. 30, pp. 235-238, 1996.
[40] S.Achenbach, J. Mohr, and F. J. Pantenburg, “Application of Scanning Probe Microscopy for the determination of the structural accuracy of high aspect ratio microstructures”, Microelectronic Engineering, Vol. 53, pp. 637-640, 2000.
[41] W. Ehrefld, and H. Lehr, “Deep X-ray Lithography for the Production of Three-Dimensional Microstructures From Metals, Polymers and Ceramics”, Radiat. Phys. Chem., Vol. 45, No. 3, pp. 349-365, 1995.
[42] “Materials for LIGA Products”, 羅一中 交通大學機械所X光微機械加工上課講義.
[43] S. Ballandras, S. Basrour, L. Robert, S. Megtert, P. Blind, M. Rouillay, P. Bernéde, and W. Daniau, “Microgrippers fabricated by the LIGA technology”, Sensors and Actuators A, Vol. 58, pp. 265-272, 1997.
[44] A. L. Bogdanov and S. S. Peredkov, “Use of SU-8 photoresist for very high aspect ratio x-ray lithography”, Microelectronic Engineering, Vol. 53, pp. 493-496, 2000.
[45] 楊啟榮、強玲英、黃奇聲,“微系統LIGA製程之精密電鑄技術”,科儀新知,Vol. 21, No. 6, 2000.
[46] 楊啟榮,“微系統類LIGA製程光刻技術”,科儀新知,Vol. 22, No. 2, 2001.
[47] 楊啟榮、強玲英、郭文凱、張哲瑋、林暉雄、謝佑聖、李育德,“微系統類LIGA製程與應用技術”,電子月刊,Vol. 7, No. 1, pp. 114-122, 2001.
[48] Se-Geun Park, Chul Kim, and Beom-hoan O, “An array of inductively coupled plasma sources for large area plasma”, The Solid Films, Vol. 355-356, pp. 252-255, 1999.
[49] W. Menz, W. Bacher, W. Bier, O.F. Hagena, J. Mohr, and D. Seidel, “Combination of LIGA with other microstructure technologies”, Microsystem Technology, Vol. 2, pp. 166-166, 1996.
[50] E. Gogolids, P. Vauvert, A. Rhallabi, and G. Turban, “Complete Plasma Physics, Plasma chemistry, and Surface Chemistry Simulation of SiO2 and Si Etching in CF4 Plasmas”, Microelectronic Engineering, Vol. 41/42, pp. 391-394, 1998.
[51] M. Francou, J.S. Danel, and L. Peccoud, “Deep and fast plasma etching for silicon micromachining”, Sensors and Actuators A, Vol. 46-47, pp. 17-21, 1995.
[52] K. Richter, M. Orfert, S. Howitz, and S. Thierbach, “Deep Plasma silicon etch for microfluidic applications”, Surface and Coatings Technology, Vol. 116-119, pp. 461-467, 1999.
[53] Xinghua Li, Takahi Abe, and Masayoshi Esashi, “Deep reactive ion etching of Pyrex glass using SF6 plasma”, Sensors and Actuators A, Vol. 87, pp. 139-145, 2001.
[54] J. Bhardwaj, H. Ashraf, and A. McQuarrie, “Dry Silicon Etching for MEMS”, The Symposium on Microstructures and Microfabricated Systems at the Annual Meeting of the Electrochemical Society, pp. 1-13, Montreal, Quebec, Canada, May 4-9, 1997.
[55] Kirt R. Williams, and Richard S. Muller, “Etch Rates for Micromachining Processing”, Journal of Microelectromechanical Systems, Vol. 5, No. 4, pp. 256-269, 1996.
[56] P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, and E.B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers”, Microsystem Technologies, Vol. 6, pp. 41-47, 1999.
[57] Michael A. Lieberman, and Allan J. Lichtenberg, “Principles of Plasma Discharges and Materials Processing”, Wiley.
[58] Yeu Kuo, “Reactive ion etching of indium tin oxide by SiCl4 based plasmas — substrate temperature effect”, Vacuum, Vol. 51, No. 4, pp. 777-779, 1998.
[59] A. M. Hynes, H. Ashraf, J.K. Bhardwaj, J. Hopkins, I. Johnston, and J.N. Shepherd, “Recent advances in silicon etching for MEMS using the ASETM process”, Sensors and Actuators A, Vol. 74, pp. 13-17, 1999.
[60] Y.X. Li, P.J. French, P.M. Sarro, and R.F. Wolffenbuttel, “SIMPLE — A technique of silicon micromachining using plasma etching”, Sensors and Actuators A, Vol.57, pp. 223-232, 1997.
[61] R. Hsiao, and J. Carr, “Si/SiO2 etching in high density SF6/CHF3/O2 plasma”, Materials Science and Engineering B, Vol. 52, pp. 63-77, 1998.
[62] Bill Graham, “Technological plasmas”, Physics World, pp. 31-36, 2001.
[63] 林郁欣、徐永裕,“感應耦合電漿深矽蝕刻技術”, 精儀中心簡訓PIDC Newsletter, Vol. 44, pp. 6-7, 2001.
[64] 魏茂國,“準分子雷射應用於奈米加工技術簡介”, Newsletter of the Chinese Society of Mechanism and Machine Theory, pp. 1-6, August, 1998.
[65] Jae-Duk Lee, Jun-Bo Yoon, Jae-Kwan Kim, Hoon-Ju Chung, Choon-Sup Lee, Hi- Deok Lee, Ho-Jun Lee, Choong-Ki Kim, and Chul-Hi Han, “A Thermal Inkjet Printhead with a Monolithically Fabricated Nozzle Plate and Self-Aligned Ink Feed Hole”, Journal of Microelectromechanical Systems, Vol. 8, No. 3, pp. 229-236, 1999.
[66] R. Wimberger-Friedl, “Injection Molding of Sub-μm Grating Optical Elements”, ANTEC ‘99, pp. 476-480.
[67] Bernd Loechel, “Thick-layer resists for surface micromachining”, J. Micromech, Microeng., Vol. 10, pp. 108-115, 2000.
[68] 徐作聖,邱奕嘉,曹佳倩 “微機電產業發展策略之研究-以生物晶片為例”,科學發展政策報導,SR9102T1,二月,2002.
[69] Stenen D. Leith, and Daniel T. Schwartz, “High-Rate Through-Mold Electrodeposition of Thick (>200μm) NiFe MEMS Components with Uniform Composition”, Journal of Microelectromechanical System, Vol. 8, No. 4, pp. 384-392, 1999.
[70] Alexander Hölke, and H Thurman Henderson, “Ultra-deep anisotropic etching of (110) silicon”, J. Micromech, Microeng., Vol. 9, pp. 51-57, 1999.
[71] 張茂男、陳志遠、潘扶民,“掃瞄電容顯微鏡分析技術及其在矽晶圓表面分析之應用”,科儀新知,Vol. 22, No. 5, pp. 67-75, 2001.
[72] 莊達仁,VLSI製造技術,高立出版社,2000。
[73] 張俊彥等,積體電路製程及設備技術手冊,經濟部技術處,1997。
[74] 陳力俊,微電子材料與製程,中國材料科學學會,2000。
[75] 楊龍杰,“微冷卻器之製程技術研究 The research on the processing techniques of silicon micro-coolers”, 第六屆微系統科技協會年會暨微機電系統成果發表會論文集,pp. 216-219, 2000.
[76] L.T. Romankiw, “A path: from electroplating through lithographic masks in electronics to LIGA in MEMS,” Electrochemical Acta, Vol. 42, pp. 2985-3005, 1997.
[77] S. Brida, A. Faes, V. Guarnieri, F. Giacomozzi, B. Margesin, M. Paranjape, G.U. Pignatel, and M. Zen, “Microstructures etched in doped TMAH solutions”, Microelectronic Engineering, Vol. 53, pp. 547-551, 2000.
[78] 龍文安,“積體電路微影製程”,高立出版社,1998.
[79] S S Kucherenko, and K D Leaver, “Modelling effects of surface tension on surface topology in spin coatings for integrated optics and micromechanics”, J. Micromech. Microeng., Vol. 10, pp. 299-308, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. [71] 張茂男、陳志遠、潘扶民,“掃瞄電容顯微鏡分析技術及其在矽晶圓表面分析之應用”,科儀新知,Vol. 22, No. 5, pp. 67-75, 2001.
2. 林榮第、吳慶南、李鍾祥(1992)‧吸菸與健康‧當代醫學,19(12),7-14。
3. 黃德祥(1993)‧青少年抽菸行為調查之研究─以一所私立高職為例‧彰化師範大學學報,4,67-109。
4. 黃淑貞(1997)‧大學生健康信念、自我效能、社會支持與吸菸行為研究‧學校衛生,31,30-44。
5. 黃松元(1993)‧建康促進與健康教育‧台北:師大書苑。
6. [47] 楊啟榮、強玲英、郭文凱、張哲瑋、林暉雄、謝佑聖、李育德,“微系統類LIGA製程與應用技術”,電子月刊,Vol. 7, No. 1, pp. 114-122, 2001.
7. 吳瓊滿(1999)‧性別、吸菸與心肌梗塞間的關係‧美和專校學報,17,15-29。
8. 李景美(1990)‧台北市國民中學三年級男生吸菸行為之情境及家庭狀況因素分析研究‧學校衛生,17,38-47。
9. 江承曉、沈姍姍、林為森(1999)‧南部地區專科學生實施健康促進行為之探討‧嘉南學報,25,129-138。
10. 洪錦珠(1988)‧全國五專(工專)學生抽菸行為與態度問題之研究‧華夏學報,22,8489-8686。
11. 鍾兆惠(1997)‧屏東縣國、高中(含五專)生吸菸、嚼檳榔之盛行率及對健康危害認知調查研究‧大仁學報,15,205-226。
12. 劉潔心、劉貴雲、蔡春美(2000)‧青少年互動世界菸自助手冊教材發展及介入效果之初探性研究‧衛生教育學報,13,73-89。
13. 鄭惠美(2000)‧學童家長與學童蔬果攝取行為研究‧衛生教育學報,13,91-105。
14. 黃松元、余玉眉、江永盛、陳政友、賴香如、何瑞琴(1991)‧台灣地區青少年吸菸行為調查研究‧衛生教育論文集刊,5,45-66。
15. 陳錫琦(1995)‧青少年吸菸意向研究‧學校衛生,28,27-36。