跳到主要內容

臺灣博碩士論文加值系統

(3.90.139.113) 您好!臺灣時間:2022/01/16 17:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝德宇
研究生(外文):De-Yu Hsieh
論文名稱:雷射切雕機的精度調校自動化
論文名稱(外文):Automation of Laser Cutter Accuracy Adjustment
指導教授:鄭璧瑩
指導教授(外文):Pi-Ying Cheng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:57
中文關鍵詞:類神經網路田口法
外文關鍵詞:Neural NetworkTaguchi Method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:354
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於快速、消耗功率小,雷射加工機已被廣泛應用在光罩製作、IC打印(Marking)等方面。當應用在打印時,往往需要將一個圖案的陣列打在IC上,即使每個圖樣的誤差很小,由於數量龐大而產生相當大的誤差累積,所以誤差的校正非常重要。
誤差參數的調整必須先觀察加工的結果,找出誤差的形式,再調整相關的參數。但由於誤差的現象是由數個參數所造成,而且參數間會交互影響,所以非常難調整,而且當機台有所變動時,如:更換鏡頭、改變焦距時,均必須重新調整,所以需要相當長的時間和豐富的經驗,因此參數調整程序的自動化非常重要。
首先將以田口法的理論,建立直交配置表,分析各可控因子對各種加工誤差影響的程度,接著利用田口法所得的結果,選定數組實驗參數作為實驗數據,接著利用類神經網路,配合最佳化理論,以前述的實驗參數及所得的數據來訓練類神經網路,找出誤差參數及加工結果的數學模式,再求出此數學模式的反函數,就可利用加工結果及初始的參數設定找出加工誤差最小的參數值。
Because of high speed and low power consumption, laser machine has been applied to manufacturing of mask and IC marking. We always need to mark an pattern array on a workpiece, even if the error of each pattern is small, the total error will be large because of large amount of patterns, so correction of error is very important.
In order to adjust parameters, we should observe results of machining first, find the trend of error. But errors are related to several parameters, and the correlations between each errors are nonlinear, so it’s hard to adjust, further more, when alterations happen to the machine, we should readjust parameters, it takes a lot of time and depends on experiences of engineers, so it’s important to automate computation of parameters.
First, we build orthogonal array on the basis of Taguchi Method, analyze the degree of influence of controllable factors to machining errors. Then use previous result to determine several parameters of experiment, and use these data as training sets of neural network, find the mathematical model between error parameters and machining results, and inverse function of this model, then we can use Parameters and results to find optimal parameters.
目錄
摘要………………………………………………………………….….i
Abstract……………………………………………….……………..….ii
目錄……………………………………………….………………...….iv
圖目錄……………………………………………….……………….…v
表目錄……………………………………………….…………………vii
第一章 緒論….………………………………………….……….……..1
1.1研究動機………………………………………………….…….1
1.2文獻回顧………………………………………………….…….3
1.3研究流程………………………………………………….…….5
第二章 田口法….………………………………………….…….……..7
2.1田口法簡介………………………………………….…….……7
2.2田口法原理………………………………………….…….……7
第三章 類神經網路………………………………………….…….….14
3.1類神經網路簡介………………………………….….…….….14
3.2類神經網路組成架構……………………...………..….….18
3.3倒傳遞網路………………………………….…………….….21
第四章 雷射加工機參數調整……………………....…………….….27
4.1雷射加工機參數介紹……………………..…….……...….27
4.2系統建模…………………….....…….………...….….29
4.3取得訓練及測試範例……………………………...……....32
4.4訓練類神經網路………………………………….……......40
4.5雷射加工機參數調整實驗……………………………..…….45
第五章 結論………………………………………………..…….…...53
參考文獻………………………………………………………….…...55
參考文獻
1. T. Hagan, “Neural Network Design”,PWS PUBLISHING COMPANY 1995.
2. S. Haykin, “Neural Networks : A Comprehensive Foundation”, Prentice Hall, 1999.
3. N.Sundararajan, “Parallel Architectures for Artificial Neural Networks”, IEEE Computer Society, 1998.
4. C. Principe, “Neural and Adaptive Systems”, John Wiley & Sons, Inc., 1999.
5. K. Hornik,“Multilayer Feedforward Networks are Universal Approximators”, Neural Networks,1989.
6. F.Scradelli, A.H. Tsoi, “Universal Approximation Using Feedforward Neural Networks:A Survey of Some Existing Methods, and Some New Results”, Neural Networks, 1998.
7. U.Bhattacharya, “Self-adaptive Learning Rates in Backpropagation Algorithm Improve Its Function Approximation Performance”,IEEE.
8. Yo-Ping Huang, “Improving the Backpropagation Learning Speed with Adpative Neuro-Fuzzy Technique”, Proceeding of 1993 International Joint Conference on Neural Networks.
9. A. Zaghw, “An Automated Approach for Selecting the Learning Rate and Momentum in Back-Propagation Networks”, IEEE 1994.
10. M.Riedmiller, “A Director Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm”, IEEE 1993.
11. M.E. Rimer, “Speed Training: Improving the Rate of Backpropagation Learning through Stochastic Sample Presentation”, IEEE 2001.
12. J. Lee, “Improvement on Function Approximation Capability of Backpropagation Neural Networks”, IEEE
13. L. Marquez, “Function Approximation Using Backpropagation and General Regression Neural Networks”, IEEE 1993.
14. David S. Chen, “A Robust Back Propagation Learning Algorithm for Function Approxiamtion”, IEEE 1994.
15. J. Bilmes, “Using PHIPAC to Speed Error Back-Propagation Learning”, IEEE 1997.
16. U. Vollmer, “Experimental study on the precision requirements of RBF, RPROP, and BPTT training”, IEE 1999.
17. D. Nguyen “Improving the Learning Speed of 2-Layer Neural Networks by Choosing Initial Values of the Adaptive Weights”
18. Martin T. Hagan, “training Feedforward Networks with the Marquart Algorithm”, IEEE 1994.
19. J.C. Patra, “Chebyschev Functional Link Artifitial Neural Netwoprks for Nonlinear Dynamic System Identification”, IEEE 2000.
20. Y-H Pao, ”Functional Link Net Computing:Theory, System Architecture, and Functionalities”, IJCNN 1992.
21. M. Klassen, “Characteristics of The Functional Link Net: A Higher Order Delta Rule Net”.
22. J.C. Patra, “Identification of Nonlinear Dynamic Systems Using Functional Link Artifitial Neural Networks”, IEEE 1994
23. J. Wang, “On the Design Principles of the Functional Link Nets”, IEEE 1990.
24. B. Igelnik, “Additional Perspectives on Feedforward Neural-Nets and the Functional-Link”,Proceeding of 1993 IJCNN.
25. J.A. Macias, “Evolving and Assembling Functional Link Networks”, IEEE 2000.
26. J. Sola, “ Importance of Input Data Normalization for the Application of Neural Networks to Complex Industrial Problems”, IEEE 1997.
27. W.J. Kim, “Application of Neural Networks to Signal Prediction in Nuclear Power Plant”, IEEE 1993.
28. S.Satoh, “Fast Fuzzy Neural Networks for Fault Diagnois of Rotational Machine Parts using General Parameter Learning and Adaption”, IEEE 2001.
29. 姚文龍, “滾動式學習類神經網路之動態用電預測系統”.
30. 黃條嵩, “建立SKD61模具鋼之切削力預測及車消參數最佳化模式之探討”.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top