跳到主要內容

臺灣博碩士論文加值系統

(3.87.33.97) 您好!臺灣時間:2022/01/27 17:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊男
研究生(外文):Chun-Nan Chen
論文名稱:線型與圓柱型聲波導的雙維有限元素分析
論文名稱(外文):Bi-dimensional Finite Element Analysis of Linear and Circular Cylindrical Acoustic Waveguides
指導教授:尹慶中
指導教授(外文):Ching-Chung Yin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:90
中文關鍵詞:雙維有限元素波導楔型體
外文關鍵詞:Bi-dimensional Finite ElementWaveguidesWedge
相關次數:
  • 被引用被引用:5
  • 點閱點閱:346
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
本文應用漢彌頓原理與有限元素法,以雙維有限元素法分析線型及圓柱型聲波導的頻散特性及共振模態。另以ANSYS三維有限元素法分析圓柱楔形體,計算各模態的共振頻及對應之導波相速度頻散曲線,並探討元素的收斂性。以有限元素法三維分析圓柱型聲波導,受限於元素分割數目,只能分析較低次的共振模態。雙維有限元素法的聲波導分析基礎於分離變數法,將導波的時諧波傳因子與截面振動分離成雙維有限元素,可以將分析範圍擴及高頻及高次共振模態,並減少分割元素的數目,計算精度也大幅提昇。雙維有限元素分析結果顯示,線型楔型體聲波導反對稱波的模態會隨著頂角角度增加而減少,且波速小於芮利波波速,與Lagasse經驗公式的結果一致。線型與圓柱楔形體聲波導波頻散曲線,受底部固定之邊界條件影響,在低頻範圍內相速度會明顯拉高。邊界條件對於楔型體聲波導的影響只發生在低頻的波段,結構曲率對楔型聲波導的影響,則隨著模態愈高次而愈明顯。線型及圓柱楔形體聲波導的導波能量集中在頂角,且為反對稱撓性波的型態。而線型長方體及圓柱長方形,由於斷面型態無尖角,波的能量分佈於整個斷面,除了反對稱的撓性波外,另外還會有延性波等不同型式的振動模態出現。

A bi-dimensional finite element model based on Hamilton’s principle and finite element method is developed in this thesis to analyze the dispersive characteristics and mode shapes of normal modes for linear and circular cylindrical acoustic waveguides. The dispersion curves of phase velocities for guided waves and their corresponding resonant frequencies for a circular-wedge waveguide were also evaluated by 3D finite element analysis (FEA) using the commercial code, ANSYS ver.5.7. The convergence was simultaneously discussed. The 3D FEA has limitation in calculation for higher normal modes due to constraint in the available number of elements. The bi-dimensional finite element method is based on separation of variables, in which the wave propagation factor is separated from cross-sectional vibrations of the acoustic waveguides. The present method has advantages in determination of phase velocities and mode shapes up to higher normal modes and in a wide range of frequencies without loss of accuracy. Phase velocities of the antisymmetric flexural (ASF) guided waves in linear-wedge waveguides are found to be slower than the Rayleigh wave speed. The calculated results in the range of higher wave numbers are in a good agreement with the empirical formula provided by Lagasse. The ASF waves in either linear or circular cylindrical wedge-typed waveguides have faster and frequency-dependent phase velocities in the range of lower wave numbers. It results from the boundary conditions on the bottom of waveguides, which are different from the ideal wedge problem considered in Lagasse’s work. In addition, curvatures of the acoustic waveguides increase the phase velocities of higher normal modes only. Contrary to the wedge-typed waveguides, the guided wave propagation in both linear and circular rectangular waveguides is dispersive. Most energy carried by the ASF waves in the wedge-typed waveguides is confined at the tip of wedge and is observed in the corresponding mode shapes. However, wave motion for the rectangular waveguides spreads over whole cross section. The evidence indicates that other kinds of normal modes such as extensional waves appear in the rectangular waveguides.

中文摘要…………………………………………………………… i
英文摘要…………………………………………………………… ii
誌謝………………………………………………………………… iv
目錄………………………………………………………………… v
圖表目錄…………………………………………………………… vii
第一章 緒論……………………………………………………… 1
1.1 研究背景………………………………………………… 1
1.2 文獻回顧………………………………………………… 1
1.2.1楔形聲波導的研究…………………………………… 1
1.2.2楔形聲波導的實驗量測……………………………… 2
1.2.3行波型壓電馬達的研究……………………………… 3
1.3 內容簡述………………………………………………… 4
第二章 理論分析………………………………………………… 6
2.1 應力、應變與位移之關係………………………………… 6
2.2 漢彌頓原理………………………………………………… 8
2.3 雙維有限元素分析………………………………………… 9
2.4 頻散方程式………………………………………………… 12
2.4.1 線型導波之頻散方程式…………………………… 12
2.4.2 圓柱型導波之頻散方程式………………………… 14
2.5 元素矩陣的變換…………………………………………… 15
第三章 數值模擬與討論………………………………………… 19
3.1 共振模態之三維分析……………………………………… 19
3.1.1 有限元素動態分析流程………………………………19
3.1.2 收斂性的探討…………………………………………20
3.1.3 共振模態與頻散曲線…………………………………21
3.2 波動的雙維有限元素分析結果…………………………… 21
3.2.1 線型楔形體導波之頻散曲線及模態…………………22
3.2.2 圓柱楔形體導波之頻散曲線及模態…………………23
3.2.3 線型長方體導波之頻散曲線及模態…………………24
3.2.4 圓柱長方體導波之頻散曲線及模態…………………25
第四章 結論…………………………………………………………26
參考文獻…………………………………………………………… 28
附錄A 雙維有限元素分析之等參單元…………………………… 30
附錄B 線型聲波導的元素剛度矩陣……………………………… 31
附錄C 圓柱型聲波導的元素剛度矩陣…………………………… 33
附表………………………………………………………………… 35
附圖………………………………………………………………… 37

[1] P. E. Lagasse (1972), “Analysis of a dispersion free
for elastic waves,” Electrics Letters, 8(4), 372-373.
[2] A. A. Maradudin, R. F. Walls and R. L. Ballard (1972),
“Vibrational edge modes in finite crystals,”Physics
Rev, B6, 1106-1111.
[3] P. E. Lagasse, I. M. Mason and E.A. Ash (1973),“Acoustic
surface waveguides analysis and assessment,”IEEE
Transactions on Microwave Theory and Techniquesics, MTT-
21,225-236.
[4] P. E. Lagasse (1973), “Higher-order finite element
analysis of topographic guides supporting elastic waves.”
Journal of Acoustical Society of America, 53, 1116-1122.
[5] J. Mckenna, G. D. Boyd and R. N. Thurston (1974), “Plate
theory solution for guide flexural acoustic waves along the
tip of a wedge,” IEEE Transactions on Sonics and
Ultrasonics, SU-21(3), 178-186.
[6] V. V. Krylov (1994), “Propagation of wedge acoustic waves
along wedges imbedded in water,” IEEE Ultrasonics
Symposium, 793-796.
[7] A. C. Hladky-Hennion (1996), “Finite analysis of the
propagation of acoustic wave in waveguides,” Journal of
Sound and Vibration, 194(2), 119-136.
[8] V. V. Krylov (1999), “Localized vibration modes
propagation along edges of cylindrical and conical wedge-
like structures,” Journal of Sound and Vibration, 227(1),
215-221.
[9] X. Jia and M. de Billy (1992), “Observation of the
dispersion behavior of surface acoustic wave in a wedge
waveguide by laser-ultrasonics,” Applied Physics Letters,
61, 2970-2972.
[10] X. Jia and D. Auribault and M. de Billy and G. Quentin
(1993), “Laser generated flexural acoustic wave traveling
along the tip of a wedge,” IEEE Ultrasonics Symposium,
637-640.
[11] M. de Billy (1996), “Acoustic technique applied to the
measurement of the free edge wave velocity,” Ultrasonics,
34, 611-619.
[12] C. H. Yang and J. S. Liaw (1998), “Measurements and
finite element simulations of guided waves propagation
along linear and circular wedges,” IEEE Ultrasonics
Symposium, 1139-1142.
[13] P. Hagedorn and J. Wallaschek (1992), “ Traveling wave
ultrasonic motor, Part I : working principle and
mathematical modeling of stator,” J. of Sound and
Vibration, 155(1), 31.
[14] W. Hagood and J. Mcfarland (1995), “Modelling of
piezoeletric rotary ultrasonic motor,” IEEE Transactions
on Uitrasonics Ferroelectrics and Frequency Control, 42
(2), 210-224.
[15] P. Schmidt, P. Hagedorn and Miao Binqi(1996), “A note on
the contact problem in an ultrasonic travelling wave
motor,” Int. J. Non-Linear Mechanics, 31(6), 915-924.
[16] ANSYS User’s Manual, Revision 5.0, Swanson Analysis
System, Houston, 1992.
[17] J. D. Achenbach (1973), Wave Propagation in Elastic
Solids, Chap. 5, North-Holland Publishing Company.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top