# 臺灣博碩士論文加值系統

(3.87.33.97) 您好！臺灣時間：2022/01/27 17:39

:::

### 詳目顯示

:

• 被引用:5
• 點閱:346
• 評分:
• 下載:55
• 書目收藏:0
 本文應用漢彌頓原理與有限元素法，以雙維有限元素法分析線型及圓柱型聲波導的頻散特性及共振模態。另以ANSYS三維有限元素法分析圓柱楔形體，計算各模態的共振頻及對應之導波相速度頻散曲線，並探討元素的收斂性。以有限元素法三維分析圓柱型聲波導，受限於元素分割數目，只能分析較低次的共振模態。雙維有限元素法的聲波導分析基礎於分離變數法，將導波的時諧波傳因子與截面振動分離成雙維有限元素，可以將分析範圍擴及高頻及高次共振模態，並減少分割元素的數目，計算精度也大幅提昇。雙維有限元素分析結果顯示，線型楔型體聲波導反對稱波的模態會隨著頂角角度增加而減少，且波速小於芮利波波速，與Lagasse經驗公式的結果一致。線型與圓柱楔形體聲波導波頻散曲線，受底部固定之邊界條件影響，在低頻範圍內相速度會明顯拉高。邊界條件對於楔型體聲波導的影響只發生在低頻的波段，結構曲率對楔型聲波導的影響，則隨著模態愈高次而愈明顯。線型及圓柱楔形體聲波導的導波能量集中在頂角，且為反對稱撓性波的型態。而線型長方體及圓柱長方形，由於斷面型態無尖角，波的能量分佈於整個斷面，除了反對稱的撓性波外，另外還會有延性波等不同型式的振動模態出現。
 A bi-dimensional finite element model based on Hamilton’s principle and finite element method is developed in this thesis to analyze the dispersive characteristics and mode shapes of normal modes for linear and circular cylindrical acoustic waveguides. The dispersion curves of phase velocities for guided waves and their corresponding resonant frequencies for a circular-wedge waveguide were also evaluated by 3D finite element analysis (FEA) using the commercial code, ANSYS ver.5.7. The convergence was simultaneously discussed. The 3D FEA has limitation in calculation for higher normal modes due to constraint in the available number of elements. The bi-dimensional finite element method is based on separation of variables, in which the wave propagation factor is separated from cross-sectional vibrations of the acoustic waveguides. The present method has advantages in determination of phase velocities and mode shapes up to higher normal modes and in a wide range of frequencies without loss of accuracy. Phase velocities of the antisymmetric flexural (ASF) guided waves in linear-wedge waveguides are found to be slower than the Rayleigh wave speed. The calculated results in the range of higher wave numbers are in a good agreement with the empirical formula provided by Lagasse. The ASF waves in either linear or circular cylindrical wedge-typed waveguides have faster and frequency-dependent phase velocities in the range of lower wave numbers. It results from the boundary conditions on the bottom of waveguides, which are different from the ideal wedge problem considered in Lagasse’s work. In addition, curvatures of the acoustic waveguides increase the phase velocities of higher normal modes only. Contrary to the wedge-typed waveguides, the guided wave propagation in both linear and circular rectangular waveguides is dispersive. Most energy carried by the ASF waves in the wedge-typed waveguides is confined at the tip of wedge and is observed in the corresponding mode shapes. However, wave motion for the rectangular waveguides spreads over whole cross section. The evidence indicates that other kinds of normal modes such as extensional waves appear in the rectangular waveguides.
 中文摘要…………………………………………………………… i 英文摘要…………………………………………………………… ii 誌謝………………………………………………………………… iv 目錄………………………………………………………………… v 圖表目錄…………………………………………………………… vii 第一章 緒論……………………………………………………… 1 1.1 研究背景………………………………………………… 1 1.2 文獻回顧………………………………………………… 1 1.2.1楔形聲波導的研究…………………………………… 1 1.2.2楔形聲波導的實驗量測……………………………… 2 1.2.3行波型壓電馬達的研究……………………………… 3 1.3 內容簡述………………………………………………… 4 第二章 理論分析………………………………………………… 6 2.1 應力、應變與位移之關係………………………………… 6 2.2 漢彌頓原理………………………………………………… 8 2.3 雙維有限元素分析………………………………………… 9 2.4 頻散方程式………………………………………………… 12 2.4.1 線型導波之頻散方程式…………………………… 12 2.4.2 圓柱型導波之頻散方程式………………………… 14 2.5 元素矩陣的變換…………………………………………… 15 第三章 數值模擬與討論………………………………………… 19 3.1 共振模態之三維分析……………………………………… 19 3.1.1 有限元素動態分析流程………………………………19 3.1.2 收斂性的探討…………………………………………20 3.1.3 共振模態與頻散曲線…………………………………21 3.2 波動的雙維有限元素分析結果…………………………… 21 3.2.1 線型楔形體導波之頻散曲線及模態…………………22 3.2.2 圓柱楔形體導波之頻散曲線及模態…………………23 3.2.3 線型長方體導波之頻散曲線及模態…………………24 3.2.4 圓柱長方體導波之頻散曲線及模態…………………25 第四章 結論…………………………………………………………26 參考文獻…………………………………………………………… 28 附錄A 雙維有限元素分析之等參單元…………………………… 30 附錄B 線型聲波導的元素剛度矩陣……………………………… 31 附錄C 圓柱型聲波導的元素剛度矩陣…………………………… 33 附表………………………………………………………………… 35 附圖………………………………………………………………… 37
 [1] P. E. Lagasse (1972), “Analysis of a dispersion freefor elastic waves,” Electrics Letters, 8(4), 372-373.[2] A. A. Maradudin, R. F. Walls and R. L. Ballard (1972),“Vibrational edge modes in finite crystals,”PhysicsRev, B6, 1106-1111.[3] P. E. Lagasse, I. M. Mason and E.A. Ash (1973),“Acousticsurface waveguides analysis and assessment,”IEEETransactions on Microwave Theory and Techniquesics, MTT-21,225-236.[4] P. E. Lagasse (1973), “Higher-order finite elementanalysis of topographic guides supporting elastic waves.”Journal of Acoustical Society of America, 53, 1116-1122.[5] J. Mckenna, G. D. Boyd and R. N. Thurston (1974), “Platetheory solution for guide flexural acoustic waves along thetip of a wedge,” IEEE Transactions on Sonics andUltrasonics, SU-21(3), 178-186.[6] V. V. Krylov (1994), “Propagation of wedge acoustic wavesalong wedges imbedded in water,” IEEE UltrasonicsSymposium, 793-796.[7] A. C. Hladky-Hennion (1996), “Finite analysis of thepropagation of acoustic wave in waveguides,” Journal ofSound and Vibration, 194(2), 119-136.[8] V. V. Krylov (1999), “Localized vibration modespropagation along edges of cylindrical and conical wedge-like structures,” Journal of Sound and Vibration, 227(1),215-221.[9] X. Jia and M. de Billy (1992), “Observation of thedispersion behavior of surface acoustic wave in a wedgewaveguide by laser-ultrasonics,” Applied Physics Letters,61, 2970-2972.[10] X. Jia and D. Auribault and M. de Billy and G. Quentin(1993), “Laser generated flexural acoustic wave travelingalong the tip of a wedge,” IEEE Ultrasonics Symposium,637-640.[11] M. de Billy (1996), “Acoustic technique applied to themeasurement of the free edge wave velocity,” Ultrasonics,34, 611-619.[12] C. H. Yang and J. S. Liaw (1998), “Measurements andfinite element simulations of guided waves propagationalong linear and circular wedges,” IEEE UltrasonicsSymposium, 1139-1142.[13] P. Hagedorn and J. Wallaschek (1992), “ Traveling waveultrasonic motor, Part I : working principle andmathematical modeling of stator,” J. of Sound andVibration, 155(1), 31.[14] W. Hagood and J. Mcfarland (1995), “Modelling ofpiezoeletric rotary ultrasonic motor,” IEEE Transactionson Uitrasonics Ferroelectrics and Frequency Control, 42(2), 210-224.[15] P. Schmidt, P. Hagedorn and Miao Binqi(1996), “A note onthe contact problem in an ultrasonic travelling wavemotor,” Int. J. Non-Linear Mechanics, 31(6), 915-924.[16] ANSYS User’s Manual, Revision 5.0, Swanson AnalysisSystem, Houston, 1992.[17] J. D. Achenbach (1973), Wave Propagation in ElasticSolids, Chap. 5, North-Holland Publishing Company.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 圓柱楔形超音波馬達之研發 2 偵測質子交換膜燃料電池流道板生成水的聲導波檢測 3 軌道導波的特性研究的數值模擬 4 壓電式可變焦透鏡製作與應用

 1 15. 儲蓉，對發展信用評等應有的態度與作法，經濟情勢暨評論季刊-第五卷第一期，民國八十八年 2 12. 楊宗明，建立臺灣信用評等制度可行性分析，朝陽學報，民國八十六年

 1 打線接合之實驗與有限元素研究 2 流旋型加工之有限元素模擬研究 3 使用有限元素法探討深孔鑽的鑽削偏差 4 行星式輥軋機輥軋成型分析研究 5 不對稱開口薄壁梁元素之一致性共旋轉推導法及其在挫屈分析的應用 6 平板缺陷的板波散射與主動偵測研究 7 週期分佈應變對於光纖光柵的動態響應 8 薄壁鎂合金筆記型電腦上蓋之壓鑄模澆流道設計分析 9 格巢式振波納消塊之有限元素分析 10 三維殼元素於有限元素法之架構 11 微型喇叭之研製 12 離心式機械增壓引擎之性能測試 13 利用非結構調適網格於三維直接蒙地卡羅法及其應用 14 利用波茲曼方程式模擬近似不可壓縮流流經雙方柱體流場分析之研究 15 於過渡區之穩態可壓縮流流經圓柱體的流場及熱傳分析之研究

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室